When is a riesz distribution a complex measure?

Alan D. Sokal

    Research output: Contribution to journalArticle

    Abstract

    Let R α be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by α ∈ ℂ. I give an elementary proof of the necessary and sufficient condition for R α to be a locally finite complex measure (= complex Radon measure).

    Original languageEnglish (US)
    Pages (from-to)519-534
    Number of pages16
    JournalBulletin de la Societe Mathematique de France
    Volume139
    Issue number4
    StatePublished - 2011

    Fingerprint

    Euclidean Jordan Algebra
    Radon Measure
    Necessary Conditions
    Sufficient Conditions

    Keywords

    • Gindikin's theorem
    • Jordan algebra
    • Laplace transform
    • Positive measure
    • Radon measure
    • Relatively invariant measure
    • Riesz distribution
    • Symmetric cone
    • Tempered distribution
    • Wallach set

    ASJC Scopus subject areas

    • Mathematics(all)

    Cite this

    When is a riesz distribution a complex measure? / Sokal, Alan D.

    In: Bulletin de la Societe Mathematique de France, Vol. 139, No. 4, 2011, p. 519-534.

    Research output: Contribution to journalArticle

    @article{bbf2906c24c643f8a40d39114daa8c24,
    title = "When is a riesz distribution a complex measure?",
    abstract = "Let R α be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by α ∈ ℂ. I give an elementary proof of the necessary and sufficient condition for R α to be a locally finite complex measure (= complex Radon measure).",
    keywords = "Gindikin's theorem, Jordan algebra, Laplace transform, Positive measure, Radon measure, Relatively invariant measure, Riesz distribution, Symmetric cone, Tempered distribution, Wallach set",
    author = "Sokal, {Alan D.}",
    year = "2011",
    language = "English (US)",
    volume = "139",
    pages = "519--534",
    journal = "Bulletin de la Societe Mathematique de France",
    issn = "0037-9484",
    publisher = "Societe Mathematique de France",
    number = "4",

    }

    TY - JOUR

    T1 - When is a riesz distribution a complex measure?

    AU - Sokal, Alan D.

    PY - 2011

    Y1 - 2011

    N2 - Let R α be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by α ∈ ℂ. I give an elementary proof of the necessary and sufficient condition for R α to be a locally finite complex measure (= complex Radon measure).

    AB - Let R α be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by α ∈ ℂ. I give an elementary proof of the necessary and sufficient condition for R α to be a locally finite complex measure (= complex Radon measure).

    KW - Gindikin's theorem

    KW - Jordan algebra

    KW - Laplace transform

    KW - Positive measure

    KW - Radon measure

    KW - Relatively invariant measure

    KW - Riesz distribution

    KW - Symmetric cone

    KW - Tempered distribution

    KW - Wallach set

    UR - http://www.scopus.com/inward/record.url?scp=84862093731&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84862093731&partnerID=8YFLogxK

    M3 - Article

    VL - 139

    SP - 519

    EP - 534

    JO - Bulletin de la Societe Mathematique de France

    JF - Bulletin de la Societe Mathematique de France

    SN - 0037-9484

    IS - 4

    ER -