Vesicular stomatitis virus infection of the central nervous system activates both innate and acquired immunity

Z. Bi, M. Barna, T. Komatsu, C. S. Reiss

Research output: Contribution to journalArticle

Abstract

Vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS) when intranasally applied. We have examined cellular inflammatory changes in the CNS following VSV infection. As early as 1 day postinfection (p.i.), astrocytes were activated in the olfactory bulb (OB). This was followed by activation of microglia, first observed in the OB at day 3 p.i. Expression of inducible nitric oxide synthase was observed in activated microglia in the OB at day 3 p.i., and increased inducible nitric oxide synthase expression coincided with decreased virus titers in tissue homogenates. Expression of major histocompatibility complex (MHC) class I molecules on astrocytes and microglial, endothelial, and ependymal cells was also rapidly induced and followed by induced expression of MHC class II molecules on astrocytes and microglial and endothelial cells. Consistent with the pattern of viral dissemination, MHC molecules were expressed temporally from the rostral-to-caudal direction. Infiltration of CD8+ cells was observed as early as 1 day p.i. in the OB. CD4+ cells were detected in the OB at day 4 p.i. Increasing T-cell infiltration coincided with decreased virus titers. In contrast, B-cell infiltration of the CNS was not detected until day 14 p.i., after the virus was cleared and mice were showing behavioral signs of recovery. Breakdown of the blood-brain barrier was detected beginning at day 6 p.i., was most severe at day 8 p.i., and was followed by full recovery. Collectively, these data show that both innate immunity (production of nitric oxide) and acquired immunity (expression of MHC molecules and T-cell infiltration) are activated following VSV infection in the CNS.

Original languageEnglish (US)
Pages (from-to)6466-6472
Number of pages7
JournalJournal of Virology
Volume69
Issue number10
StatePublished - 1995

Fingerprint

Vesiculovirus
Vesicular Stomatitis
olfactory bulb
Olfactory Bulb
Adaptive Immunity
Virus Diseases
Innate Immunity
central nervous system
major histocompatibility complex
Major Histocompatibility Complex
Central Nervous System
astrocytes
Astrocytes
infection
neuroglia
Microglia
Nitric Oxide Synthase Type II
viral load
Viral Load
Endothelial Cells

ASJC Scopus subject areas

  • Immunology

Cite this

Vesicular stomatitis virus infection of the central nervous system activates both innate and acquired immunity. / Bi, Z.; Barna, M.; Komatsu, T.; Reiss, C. S.

In: Journal of Virology, Vol. 69, No. 10, 1995, p. 6466-6472.

Research output: Contribution to journalArticle

@article{d2427bd48588492b8ec39f78dafabfa5,
title = "Vesicular stomatitis virus infection of the central nervous system activates both innate and acquired immunity",
abstract = "Vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS) when intranasally applied. We have examined cellular inflammatory changes in the CNS following VSV infection. As early as 1 day postinfection (p.i.), astrocytes were activated in the olfactory bulb (OB). This was followed by activation of microglia, first observed in the OB at day 3 p.i. Expression of inducible nitric oxide synthase was observed in activated microglia in the OB at day 3 p.i., and increased inducible nitric oxide synthase expression coincided with decreased virus titers in tissue homogenates. Expression of major histocompatibility complex (MHC) class I molecules on astrocytes and microglial, endothelial, and ependymal cells was also rapidly induced and followed by induced expression of MHC class II molecules on astrocytes and microglial and endothelial cells. Consistent with the pattern of viral dissemination, MHC molecules were expressed temporally from the rostral-to-caudal direction. Infiltration of CD8+ cells was observed as early as 1 day p.i. in the OB. CD4+ cells were detected in the OB at day 4 p.i. Increasing T-cell infiltration coincided with decreased virus titers. In contrast, B-cell infiltration of the CNS was not detected until day 14 p.i., after the virus was cleared and mice were showing behavioral signs of recovery. Breakdown of the blood-brain barrier was detected beginning at day 6 p.i., was most severe at day 8 p.i., and was followed by full recovery. Collectively, these data show that both innate immunity (production of nitric oxide) and acquired immunity (expression of MHC molecules and T-cell infiltration) are activated following VSV infection in the CNS.",
author = "Z. Bi and M. Barna and T. Komatsu and Reiss, {C. S.}",
year = "1995",
language = "English (US)",
volume = "69",
pages = "6466--6472",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "10",

}

TY - JOUR

T1 - Vesicular stomatitis virus infection of the central nervous system activates both innate and acquired immunity

AU - Bi, Z.

AU - Barna, M.

AU - Komatsu, T.

AU - Reiss, C. S.

PY - 1995

Y1 - 1995

N2 - Vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS) when intranasally applied. We have examined cellular inflammatory changes in the CNS following VSV infection. As early as 1 day postinfection (p.i.), astrocytes were activated in the olfactory bulb (OB). This was followed by activation of microglia, first observed in the OB at day 3 p.i. Expression of inducible nitric oxide synthase was observed in activated microglia in the OB at day 3 p.i., and increased inducible nitric oxide synthase expression coincided with decreased virus titers in tissue homogenates. Expression of major histocompatibility complex (MHC) class I molecules on astrocytes and microglial, endothelial, and ependymal cells was also rapidly induced and followed by induced expression of MHC class II molecules on astrocytes and microglial and endothelial cells. Consistent with the pattern of viral dissemination, MHC molecules were expressed temporally from the rostral-to-caudal direction. Infiltration of CD8+ cells was observed as early as 1 day p.i. in the OB. CD4+ cells were detected in the OB at day 4 p.i. Increasing T-cell infiltration coincided with decreased virus titers. In contrast, B-cell infiltration of the CNS was not detected until day 14 p.i., after the virus was cleared and mice were showing behavioral signs of recovery. Breakdown of the blood-brain barrier was detected beginning at day 6 p.i., was most severe at day 8 p.i., and was followed by full recovery. Collectively, these data show that both innate immunity (production of nitric oxide) and acquired immunity (expression of MHC molecules and T-cell infiltration) are activated following VSV infection in the CNS.

AB - Vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS) when intranasally applied. We have examined cellular inflammatory changes in the CNS following VSV infection. As early as 1 day postinfection (p.i.), astrocytes were activated in the olfactory bulb (OB). This was followed by activation of microglia, first observed in the OB at day 3 p.i. Expression of inducible nitric oxide synthase was observed in activated microglia in the OB at day 3 p.i., and increased inducible nitric oxide synthase expression coincided with decreased virus titers in tissue homogenates. Expression of major histocompatibility complex (MHC) class I molecules on astrocytes and microglial, endothelial, and ependymal cells was also rapidly induced and followed by induced expression of MHC class II molecules on astrocytes and microglial and endothelial cells. Consistent with the pattern of viral dissemination, MHC molecules were expressed temporally from the rostral-to-caudal direction. Infiltration of CD8+ cells was observed as early as 1 day p.i. in the OB. CD4+ cells were detected in the OB at day 4 p.i. Increasing T-cell infiltration coincided with decreased virus titers. In contrast, B-cell infiltration of the CNS was not detected until day 14 p.i., after the virus was cleared and mice were showing behavioral signs of recovery. Breakdown of the blood-brain barrier was detected beginning at day 6 p.i., was most severe at day 8 p.i., and was followed by full recovery. Collectively, these data show that both innate immunity (production of nitric oxide) and acquired immunity (expression of MHC molecules and T-cell infiltration) are activated following VSV infection in the CNS.

UR - http://www.scopus.com/inward/record.url?scp=0029100491&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029100491&partnerID=8YFLogxK

M3 - Article

VL - 69

SP - 6466

EP - 6472

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 10

ER -