Van der Waals vibrations and isomers of 2,3-dimethylnaphthalene·Ne: Experiment and quantum three-dimensional calculations

Thierry Droz, Samuel Leutwyler, Margaret Mandziuk, Zlatko Bacic

Research output: Contribution to journalArticle

Abstract

We report a combined experimental and theoretical study of the van der Waals isomers and intermolecular vibrations of the 2,3- dimethylnaphthalene·Ne complex in the S1 electronic state. The two-color resonant two-photon ionization spectrum exhibits eight bands within ≈40 cm-1 of the electronic origin. Theoretical considerations in combination with hole-burning spectroscopic measurements show that the transition closest to the electronic origin (at 00 0+5 cm-1) arises from an isomer which is different from that responsible for the other seven bands in the spectrum. The latter involve excitations of the intermolecular vibrations of the main isomer of 2,3- dimethylnaphthalene·Ne. Accurate three-dimensional quantum calculations of the van der Waals vibrational levels of the complex were performed using a discrete variable representation method. Combination of theory and experiment led to a complete assignment as well as to a quantitative theoretical reproduction of the experimental intermolecular vibrational level structure, and a parametrization of the intermolecular potential energy surface, modeled as sum of atom-atom Lennard-Jones pair potentials. This potential surface exhibits a global minimum above (and below) the aromatic ring plane of 2,3-dimethylnaphthalene and a shallower local minimum at C2v geometry, on the C2 axis of the molecule, adjacent to the two methyl groups. The main and minor isomers identified experimentally are associated with the global and the local minimum, respectively. The quantum calculations were extended to ≈1000 van der Waals vibrational states, i.e., to energies up to 78% of D0. These include levels localized either in the global or local minima, as well as highly excited vibrational states delocalized over all three potential minima, providing comprehensive insight into the quantum dynamics of the high-lying van der Waals states of an atom-large aromatic molecule complex.

Original languageEnglish (US)
Pages (from-to)4855-4868
Number of pages14
JournalThe Journal of chemical physics
Volume103
Issue number12
StatePublished - 1995

Fingerprint

Isomers
isomers
vibration
Atoms
vibrational states
Experiments
Lennard-Jones potential
Potential energy surfaces
Molecules
electronics
Electronic states
atoms
Ionization
hole burning
Photons
molecules
Color
potential energy
Geometry
color

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

Van der Waals vibrations and isomers of 2,3-dimethylnaphthalene·Ne : Experiment and quantum three-dimensional calculations. / Droz, Thierry; Leutwyler, Samuel; Mandziuk, Margaret; Bacic, Zlatko.

In: The Journal of chemical physics, Vol. 103, No. 12, 1995, p. 4855-4868.

Research output: Contribution to journalArticle

@article{833c44a6880842aa9f5c798eae3ed67c,
title = "Van der Waals vibrations and isomers of 2,3-dimethylnaphthalene·Ne: Experiment and quantum three-dimensional calculations",
abstract = "We report a combined experimental and theoretical study of the van der Waals isomers and intermolecular vibrations of the 2,3- dimethylnaphthalene·Ne complex in the S1 electronic state. The two-color resonant two-photon ionization spectrum exhibits eight bands within ≈40 cm-1 of the electronic origin. Theoretical considerations in combination with hole-burning spectroscopic measurements show that the transition closest to the electronic origin (at 00 0+5 cm-1) arises from an isomer which is different from that responsible for the other seven bands in the spectrum. The latter involve excitations of the intermolecular vibrations of the main isomer of 2,3- dimethylnaphthalene·Ne. Accurate three-dimensional quantum calculations of the van der Waals vibrational levels of the complex were performed using a discrete variable representation method. Combination of theory and experiment led to a complete assignment as well as to a quantitative theoretical reproduction of the experimental intermolecular vibrational level structure, and a parametrization of the intermolecular potential energy surface, modeled as sum of atom-atom Lennard-Jones pair potentials. This potential surface exhibits a global minimum above (and below) the aromatic ring plane of 2,3-dimethylnaphthalene and a shallower local minimum at C2v geometry, on the C2 axis of the molecule, adjacent to the two methyl groups. The main and minor isomers identified experimentally are associated with the global and the local minimum, respectively. The quantum calculations were extended to ≈1000 van der Waals vibrational states, i.e., to energies up to 78{\%} of D0. These include levels localized either in the global or local minima, as well as highly excited vibrational states delocalized over all three potential minima, providing comprehensive insight into the quantum dynamics of the high-lying van der Waals states of an atom-large aromatic molecule complex.",
author = "Thierry Droz and Samuel Leutwyler and Margaret Mandziuk and Zlatko Bacic",
year = "1995",
language = "English (US)",
volume = "103",
pages = "4855--4868",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "12",

}

TY - JOUR

T1 - Van der Waals vibrations and isomers of 2,3-dimethylnaphthalene·Ne

T2 - Experiment and quantum three-dimensional calculations

AU - Droz, Thierry

AU - Leutwyler, Samuel

AU - Mandziuk, Margaret

AU - Bacic, Zlatko

PY - 1995

Y1 - 1995

N2 - We report a combined experimental and theoretical study of the van der Waals isomers and intermolecular vibrations of the 2,3- dimethylnaphthalene·Ne complex in the S1 electronic state. The two-color resonant two-photon ionization spectrum exhibits eight bands within ≈40 cm-1 of the electronic origin. Theoretical considerations in combination with hole-burning spectroscopic measurements show that the transition closest to the electronic origin (at 00 0+5 cm-1) arises from an isomer which is different from that responsible for the other seven bands in the spectrum. The latter involve excitations of the intermolecular vibrations of the main isomer of 2,3- dimethylnaphthalene·Ne. Accurate three-dimensional quantum calculations of the van der Waals vibrational levels of the complex were performed using a discrete variable representation method. Combination of theory and experiment led to a complete assignment as well as to a quantitative theoretical reproduction of the experimental intermolecular vibrational level structure, and a parametrization of the intermolecular potential energy surface, modeled as sum of atom-atom Lennard-Jones pair potentials. This potential surface exhibits a global minimum above (and below) the aromatic ring plane of 2,3-dimethylnaphthalene and a shallower local minimum at C2v geometry, on the C2 axis of the molecule, adjacent to the two methyl groups. The main and minor isomers identified experimentally are associated with the global and the local minimum, respectively. The quantum calculations were extended to ≈1000 van der Waals vibrational states, i.e., to energies up to 78% of D0. These include levels localized either in the global or local minima, as well as highly excited vibrational states delocalized over all three potential minima, providing comprehensive insight into the quantum dynamics of the high-lying van der Waals states of an atom-large aromatic molecule complex.

AB - We report a combined experimental and theoretical study of the van der Waals isomers and intermolecular vibrations of the 2,3- dimethylnaphthalene·Ne complex in the S1 electronic state. The two-color resonant two-photon ionization spectrum exhibits eight bands within ≈40 cm-1 of the electronic origin. Theoretical considerations in combination with hole-burning spectroscopic measurements show that the transition closest to the electronic origin (at 00 0+5 cm-1) arises from an isomer which is different from that responsible for the other seven bands in the spectrum. The latter involve excitations of the intermolecular vibrations of the main isomer of 2,3- dimethylnaphthalene·Ne. Accurate three-dimensional quantum calculations of the van der Waals vibrational levels of the complex were performed using a discrete variable representation method. Combination of theory and experiment led to a complete assignment as well as to a quantitative theoretical reproduction of the experimental intermolecular vibrational level structure, and a parametrization of the intermolecular potential energy surface, modeled as sum of atom-atom Lennard-Jones pair potentials. This potential surface exhibits a global minimum above (and below) the aromatic ring plane of 2,3-dimethylnaphthalene and a shallower local minimum at C2v geometry, on the C2 axis of the molecule, adjacent to the two methyl groups. The main and minor isomers identified experimentally are associated with the global and the local minimum, respectively. The quantum calculations were extended to ≈1000 van der Waals vibrational states, i.e., to energies up to 78% of D0. These include levels localized either in the global or local minima, as well as highly excited vibrational states delocalized over all three potential minima, providing comprehensive insight into the quantum dynamics of the high-lying van der Waals states of an atom-large aromatic molecule complex.

UR - http://www.scopus.com/inward/record.url?scp=0040020791&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0040020791&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0040020791

VL - 103

SP - 4855

EP - 4868

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 12

ER -