Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves

Elena Beretta, Maarten V. De Hoop, Elisa Francini, Sergio Vessella, Jian Zhai

Research output: Contribution to journalArticle

Abstract

We consider the inverse problem of determining the Lamé parameters and the density of a three-dimensional elastic body from the local time-harmonic Dirichlet-to-Neumann map. We prove uniqueness and Lipschitz stability of this inverse problem when the Lamé parameters and the density are assumed to be piecewise constant on a given domain partition.

Original languageEnglish (US)
Article number035013
JournalInverse Problems
Volume33
Issue number3
DOIs
StatePublished - Feb 15 2017

Fingerprint

Lipschitz Stability
Inverse Boundary Value Problem
Elastic Waves
Elastic waves
Convergence of numerical methods
Inverse problems
Boundary value problems
Inverse Problem
Uniqueness
Harmonic
Dirichlet-to-Neumann Map
Elastic body
Harmonic Maps
Local Time
Partition
Three-dimensional

Keywords

  • inverse boundary value problem
  • Lipschitz stability
  • time-harmonic elastic waves
  • uniqueness

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Signal Processing
  • Mathematical Physics
  • Computer Science Applications
  • Applied Mathematics

Cite this

Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves. / Beretta, Elena; De Hoop, Maarten V.; Francini, Elisa; Vessella, Sergio; Zhai, Jian.

In: Inverse Problems, Vol. 33, No. 3, 035013, 15.02.2017.

Research output: Contribution to journalArticle

Beretta, Elena ; De Hoop, Maarten V. ; Francini, Elisa ; Vessella, Sergio ; Zhai, Jian. / Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves. In: Inverse Problems. 2017 ; Vol. 33, No. 3.
@article{233164b1df374a6ca2dc230356a4810f,
title = "Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves",
abstract = "We consider the inverse problem of determining the Lam{\'e} parameters and the density of a three-dimensional elastic body from the local time-harmonic Dirichlet-to-Neumann map. We prove uniqueness and Lipschitz stability of this inverse problem when the Lam{\'e} parameters and the density are assumed to be piecewise constant on a given domain partition.",
keywords = "inverse boundary value problem, Lipschitz stability, time-harmonic elastic waves, uniqueness",
author = "Elena Beretta and {De Hoop}, {Maarten V.} and Elisa Francini and Sergio Vessella and Jian Zhai",
year = "2017",
month = "2",
day = "15",
doi = "10.1088/1361-6420/aa5bef",
language = "English (US)",
volume = "33",
journal = "Inverse Problems",
issn = "0266-5611",
publisher = "IOP Publishing Ltd.",
number = "3",

}

TY - JOUR

T1 - Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves

AU - Beretta, Elena

AU - De Hoop, Maarten V.

AU - Francini, Elisa

AU - Vessella, Sergio

AU - Zhai, Jian

PY - 2017/2/15

Y1 - 2017/2/15

N2 - We consider the inverse problem of determining the Lamé parameters and the density of a three-dimensional elastic body from the local time-harmonic Dirichlet-to-Neumann map. We prove uniqueness and Lipschitz stability of this inverse problem when the Lamé parameters and the density are assumed to be piecewise constant on a given domain partition.

AB - We consider the inverse problem of determining the Lamé parameters and the density of a three-dimensional elastic body from the local time-harmonic Dirichlet-to-Neumann map. We prove uniqueness and Lipschitz stability of this inverse problem when the Lamé parameters and the density are assumed to be piecewise constant on a given domain partition.

KW - inverse boundary value problem

KW - Lipschitz stability

KW - time-harmonic elastic waves

KW - uniqueness

UR - http://www.scopus.com/inward/record.url?scp=85016073960&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85016073960&partnerID=8YFLogxK

U2 - 10.1088/1361-6420/aa5bef

DO - 10.1088/1361-6420/aa5bef

M3 - Article

AN - SCOPUS:85016073960

VL - 33

JO - Inverse Problems

JF - Inverse Problems

SN - 0266-5611

IS - 3

M1 - 035013

ER -