Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves

Elena Beretta, Maarten V. De Hoop, Elisa Francini, Sergio Vessella, Jian Zhai

    Research output: Contribution to journalArticle

    Abstract

    We consider the inverse problem of determining the Lamé parameters and the density of a three-dimensional elastic body from the local time-harmonic Dirichlet-to-Neumann map. We prove uniqueness and Lipschitz stability of this inverse problem when the Lamé parameters and the density are assumed to be piecewise constant on a given domain partition.

    Original languageEnglish (US)
    Article number035013
    JournalInverse Problems
    Volume33
    Issue number3
    DOIs
    StatePublished - Feb 15 2017

    Fingerprint

    Lipschitz Stability
    Inverse Boundary Value Problem
    Elastic Waves
    Elastic waves
    Convergence of numerical methods
    Inverse problems
    Boundary value problems
    Inverse Problem
    Uniqueness
    Harmonic
    Dirichlet-to-Neumann Map
    Elastic body
    Harmonic Maps
    Local Time
    Partition
    Three-dimensional

    Keywords

    • inverse boundary value problem
    • Lipschitz stability
    • time-harmonic elastic waves
    • uniqueness

    ASJC Scopus subject areas

    • Theoretical Computer Science
    • Signal Processing
    • Mathematical Physics
    • Computer Science Applications
    • Applied Mathematics

    Cite this

    Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves. / Beretta, Elena; De Hoop, Maarten V.; Francini, Elisa; Vessella, Sergio; Zhai, Jian.

    In: Inverse Problems, Vol. 33, No. 3, 035013, 15.02.2017.

    Research output: Contribution to journalArticle

    Beretta, Elena ; De Hoop, Maarten V. ; Francini, Elisa ; Vessella, Sergio ; Zhai, Jian. / Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves. In: Inverse Problems. 2017 ; Vol. 33, No. 3.
    @article{233164b1df374a6ca2dc230356a4810f,
    title = "Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves",
    abstract = "We consider the inverse problem of determining the Lam{\'e} parameters and the density of a three-dimensional elastic body from the local time-harmonic Dirichlet-to-Neumann map. We prove uniqueness and Lipschitz stability of this inverse problem when the Lam{\'e} parameters and the density are assumed to be piecewise constant on a given domain partition.",
    keywords = "inverse boundary value problem, Lipschitz stability, time-harmonic elastic waves, uniqueness",
    author = "Elena Beretta and {De Hoop}, {Maarten V.} and Elisa Francini and Sergio Vessella and Jian Zhai",
    year = "2017",
    month = "2",
    day = "15",
    doi = "10.1088/1361-6420/aa5bef",
    language = "English (US)",
    volume = "33",
    journal = "Inverse Problems",
    issn = "0266-5611",
    publisher = "IOP Publishing Ltd.",
    number = "3",

    }

    TY - JOUR

    T1 - Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves

    AU - Beretta, Elena

    AU - De Hoop, Maarten V.

    AU - Francini, Elisa

    AU - Vessella, Sergio

    AU - Zhai, Jian

    PY - 2017/2/15

    Y1 - 2017/2/15

    N2 - We consider the inverse problem of determining the Lamé parameters and the density of a three-dimensional elastic body from the local time-harmonic Dirichlet-to-Neumann map. We prove uniqueness and Lipschitz stability of this inverse problem when the Lamé parameters and the density are assumed to be piecewise constant on a given domain partition.

    AB - We consider the inverse problem of determining the Lamé parameters and the density of a three-dimensional elastic body from the local time-harmonic Dirichlet-to-Neumann map. We prove uniqueness and Lipschitz stability of this inverse problem when the Lamé parameters and the density are assumed to be piecewise constant on a given domain partition.

    KW - inverse boundary value problem

    KW - Lipschitz stability

    KW - time-harmonic elastic waves

    KW - uniqueness

    UR - http://www.scopus.com/inward/record.url?scp=85016073960&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=85016073960&partnerID=8YFLogxK

    U2 - 10.1088/1361-6420/aa5bef

    DO - 10.1088/1361-6420/aa5bef

    M3 - Article

    VL - 33

    JO - Inverse Problems

    JF - Inverse Problems

    SN - 0266-5611

    IS - 3

    M1 - 035013

    ER -