Unique Ergodicity for Fractionally Dissipated, Stochastically Forced 2D Euler Equations

Peter Constantin, Nathan Glatt-Holtz, Vlad Vicol

Research output: Contribution to journalArticle

Abstract

We establish the existence and uniqueness of an ergodic invariant measure for 2D fractionally dissipated stochastic Euler equations on the periodic box for any power of the dissipation term.

Original languageEnglish (US)
Pages (from-to)819-857
Number of pages39
JournalCommunications in Mathematical Physics
Volume330
Issue number2
DOIs
StatePublished - Jan 1 2014

Fingerprint

Ergodic Measure
Ergodicity
uniqueness
Euler Equations
Invariant Measure
Stochastic Equations
boxes
Dissipation
Existence and Uniqueness
dissipation
Term

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Cite this

Unique Ergodicity for Fractionally Dissipated, Stochastically Forced 2D Euler Equations. / Constantin, Peter; Glatt-Holtz, Nathan; Vicol, Vlad.

In: Communications in Mathematical Physics, Vol. 330, No. 2, 01.01.2014, p. 819-857.

Research output: Contribution to journalArticle

Constantin, Peter ; Glatt-Holtz, Nathan ; Vicol, Vlad. / Unique Ergodicity for Fractionally Dissipated, Stochastically Forced 2D Euler Equations. In: Communications in Mathematical Physics. 2014 ; Vol. 330, No. 2. pp. 819-857.
@article{a98cc7c73baf47818a43ced5a8a0771e,
title = "Unique Ergodicity for Fractionally Dissipated, Stochastically Forced 2D Euler Equations",
abstract = "We establish the existence and uniqueness of an ergodic invariant measure for 2D fractionally dissipated stochastic Euler equations on the periodic box for any power of the dissipation term.",
author = "Peter Constantin and Nathan Glatt-Holtz and Vlad Vicol",
year = "2014",
month = "1",
day = "1",
doi = "10.1007/s00220-014-2003-3",
language = "English (US)",
volume = "330",
pages = "819--857",
journal = "Communications in Mathematical Physics",
issn = "0010-3616",
publisher = "Springer New York",
number = "2",

}

TY - JOUR

T1 - Unique Ergodicity for Fractionally Dissipated, Stochastically Forced 2D Euler Equations

AU - Constantin, Peter

AU - Glatt-Holtz, Nathan

AU - Vicol, Vlad

PY - 2014/1/1

Y1 - 2014/1/1

N2 - We establish the existence and uniqueness of an ergodic invariant measure for 2D fractionally dissipated stochastic Euler equations on the periodic box for any power of the dissipation term.

AB - We establish the existence and uniqueness of an ergodic invariant measure for 2D fractionally dissipated stochastic Euler equations on the periodic box for any power of the dissipation term.

UR - http://www.scopus.com/inward/record.url?scp=84903172604&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84903172604&partnerID=8YFLogxK

U2 - 10.1007/s00220-014-2003-3

DO - 10.1007/s00220-014-2003-3

M3 - Article

VL - 330

SP - 819

EP - 857

JO - Communications in Mathematical Physics

JF - Communications in Mathematical Physics

SN - 0010-3616

IS - 2

ER -