Uniform nonextendability from nets

Assaf Naor

Research output: Contribution to journalArticle

Abstract

It is shown that there exist Banach spaces X, Y, a 1-net N of X and a Lipschitz function f:N→Y such that every F:. X→. Y that extends f is not uniformly continuous.

Original languageEnglish (US)
Pages (from-to)991-994
Number of pages4
JournalComptes Rendus Mathematique
Volume353
Issue number11
DOIs
StatePublished - Nov 1 2015

Fingerprint

Uniformly continuous
Lipschitz Function
Banach space

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Uniform nonextendability from nets. / Naor, Assaf.

In: Comptes Rendus Mathematique, Vol. 353, No. 11, 01.11.2015, p. 991-994.

Research output: Contribution to journalArticle

Naor, Assaf. / Uniform nonextendability from nets. In: Comptes Rendus Mathematique. 2015 ; Vol. 353, No. 11. pp. 991-994.
@article{4a885bb1eda94de3b4717af4cbc4f2dd,
title = "Uniform nonextendability from nets",
abstract = "It is shown that there exist Banach spaces X, Y, a 1-net N of X and a Lipschitz function f:N→Y such that every F:. X→. Y that extends f is not uniformly continuous.",
author = "Assaf Naor",
year = "2015",
month = "11",
day = "1",
doi = "10.1016/j.crma.2015.09.005",
language = "English (US)",
volume = "353",
pages = "991--994",
journal = "Comptes Rendus Mathematique",
issn = "1631-073X",
publisher = "Elsevier Masson",
number = "11",

}

TY - JOUR

T1 - Uniform nonextendability from nets

AU - Naor, Assaf

PY - 2015/11/1

Y1 - 2015/11/1

N2 - It is shown that there exist Banach spaces X, Y, a 1-net N of X and a Lipschitz function f:N→Y such that every F:. X→. Y that extends f is not uniformly continuous.

AB - It is shown that there exist Banach spaces X, Y, a 1-net N of X and a Lipschitz function f:N→Y such that every F:. X→. Y that extends f is not uniformly continuous.

UR - http://www.scopus.com/inward/record.url?scp=84947706966&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84947706966&partnerID=8YFLogxK

U2 - 10.1016/j.crma.2015.09.005

DO - 10.1016/j.crma.2015.09.005

M3 - Article

VL - 353

SP - 991

EP - 994

JO - Comptes Rendus Mathematique

JF - Comptes Rendus Mathematique

SN - 1631-073X

IS - 11

ER -