Understanding the dissolution of zeolites

Ryan Hartman, H. Scott Fogler

Research output: Contribution to journalArticle

Abstract

Scientific knowledge of how zeolites, a unique classification of microporous aluminosilicates, undergo dissolution in aqueous hydrochloric acid solutions is limited. Understanding the dissolution of zeolites is fundamental to a number of processes occurring in nature and throughout industry. To better understand the dissolution process, experiments were carried out establishing that the Si-to-Al ratio controls zeolite framework dissolution, by which the selective removal of aluminum constrains the removal of silicon. Stoichiometric dissolution is observed for Type 4A zeolite in HCl where the Si-to-Al ratio is equal to 1.0. Framework silicon dissolves completely during Type 4A dissolution and is followed by silicate precipitation. However, for the zeolite analcime which has a Si-to-Al ratio of 2.0 dissolves non-stoichiometrically as the selective removal of aluminum results in partially dissolved silicate particles followed by silicate precipitation. In Type Y zeolite, exhibiting a Si-to-Al ratio of 3.0, there is insufficient aluminum to weaken the structure and cause silicon to dissolve in HCl. Thus, little or no precipitation is observed, and amorphous undissolvable silicate particles remain intact. The initial dissolution rates of Type Y and 4A zeolites demonstrate that dissolution is constrained by the number of available reaction sites, and a selective removal rate parameter is applied to delineate the mechanism of particle dissolution by demonstrating the kinetic influence of the Si-to-Al ratio. Zeolite framework models are constructed and used to undergird the basic dissolution mechanism. The framework models, scanning electron micrographs of partially dissolved crystals, and experimentally measured dissolution rates all demonstrate that a zeolite's Si-to-Al framework ratio plays a universal role in the dissolution mechanism, independent of framework type. Consequently, the unique mechanism of zeolite dissolution has general implications on how petroleum reservoir stimulation treatments should be designed.

Original languageEnglish (US)
Pages (from-to)5477-5484
Number of pages8
JournalLangmuir
Volume23
Issue number10
DOIs
StatePublished - May 8 2007

Fingerprint

Zeolites
zeolites
dissolving
Dissolution
Silicates
silicates
Silicon
Aluminum
aluminum
silicon
Petroleum reservoirs
Hydrochloric Acid
Aluminosilicates
hydrochloric acid
Hydrochloric acid
crude oil
stimulation

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Colloid and Surface Chemistry

Cite this

Understanding the dissolution of zeolites. / Hartman, Ryan; Fogler, H. Scott.

In: Langmuir, Vol. 23, No. 10, 08.05.2007, p. 5477-5484.

Research output: Contribution to journalArticle

Hartman, Ryan ; Fogler, H. Scott. / Understanding the dissolution of zeolites. In: Langmuir. 2007 ; Vol. 23, No. 10. pp. 5477-5484.
@article{c2daec41fa3a408bb5630a19dfbf2e4b,
title = "Understanding the dissolution of zeolites",
abstract = "Scientific knowledge of how zeolites, a unique classification of microporous aluminosilicates, undergo dissolution in aqueous hydrochloric acid solutions is limited. Understanding the dissolution of zeolites is fundamental to a number of processes occurring in nature and throughout industry. To better understand the dissolution process, experiments were carried out establishing that the Si-to-Al ratio controls zeolite framework dissolution, by which the selective removal of aluminum constrains the removal of silicon. Stoichiometric dissolution is observed for Type 4A zeolite in HCl where the Si-to-Al ratio is equal to 1.0. Framework silicon dissolves completely during Type 4A dissolution and is followed by silicate precipitation. However, for the zeolite analcime which has a Si-to-Al ratio of 2.0 dissolves non-stoichiometrically as the selective removal of aluminum results in partially dissolved silicate particles followed by silicate precipitation. In Type Y zeolite, exhibiting a Si-to-Al ratio of 3.0, there is insufficient aluminum to weaken the structure and cause silicon to dissolve in HCl. Thus, little or no precipitation is observed, and amorphous undissolvable silicate particles remain intact. The initial dissolution rates of Type Y and 4A zeolites demonstrate that dissolution is constrained by the number of available reaction sites, and a selective removal rate parameter is applied to delineate the mechanism of particle dissolution by demonstrating the kinetic influence of the Si-to-Al ratio. Zeolite framework models are constructed and used to undergird the basic dissolution mechanism. The framework models, scanning electron micrographs of partially dissolved crystals, and experimentally measured dissolution rates all demonstrate that a zeolite's Si-to-Al framework ratio plays a universal role in the dissolution mechanism, independent of framework type. Consequently, the unique mechanism of zeolite dissolution has general implications on how petroleum reservoir stimulation treatments should be designed.",
author = "Ryan Hartman and Fogler, {H. Scott}",
year = "2007",
month = "5",
day = "8",
doi = "10.1021/la063699g",
language = "English (US)",
volume = "23",
pages = "5477--5484",
journal = "Langmuir",
issn = "0743-7463",
publisher = "American Chemical Society",
number = "10",

}

TY - JOUR

T1 - Understanding the dissolution of zeolites

AU - Hartman, Ryan

AU - Fogler, H. Scott

PY - 2007/5/8

Y1 - 2007/5/8

N2 - Scientific knowledge of how zeolites, a unique classification of microporous aluminosilicates, undergo dissolution in aqueous hydrochloric acid solutions is limited. Understanding the dissolution of zeolites is fundamental to a number of processes occurring in nature and throughout industry. To better understand the dissolution process, experiments were carried out establishing that the Si-to-Al ratio controls zeolite framework dissolution, by which the selective removal of aluminum constrains the removal of silicon. Stoichiometric dissolution is observed for Type 4A zeolite in HCl where the Si-to-Al ratio is equal to 1.0. Framework silicon dissolves completely during Type 4A dissolution and is followed by silicate precipitation. However, for the zeolite analcime which has a Si-to-Al ratio of 2.0 dissolves non-stoichiometrically as the selective removal of aluminum results in partially dissolved silicate particles followed by silicate precipitation. In Type Y zeolite, exhibiting a Si-to-Al ratio of 3.0, there is insufficient aluminum to weaken the structure and cause silicon to dissolve in HCl. Thus, little or no precipitation is observed, and amorphous undissolvable silicate particles remain intact. The initial dissolution rates of Type Y and 4A zeolites demonstrate that dissolution is constrained by the number of available reaction sites, and a selective removal rate parameter is applied to delineate the mechanism of particle dissolution by demonstrating the kinetic influence of the Si-to-Al ratio. Zeolite framework models are constructed and used to undergird the basic dissolution mechanism. The framework models, scanning electron micrographs of partially dissolved crystals, and experimentally measured dissolution rates all demonstrate that a zeolite's Si-to-Al framework ratio plays a universal role in the dissolution mechanism, independent of framework type. Consequently, the unique mechanism of zeolite dissolution has general implications on how petroleum reservoir stimulation treatments should be designed.

AB - Scientific knowledge of how zeolites, a unique classification of microporous aluminosilicates, undergo dissolution in aqueous hydrochloric acid solutions is limited. Understanding the dissolution of zeolites is fundamental to a number of processes occurring in nature and throughout industry. To better understand the dissolution process, experiments were carried out establishing that the Si-to-Al ratio controls zeolite framework dissolution, by which the selective removal of aluminum constrains the removal of silicon. Stoichiometric dissolution is observed for Type 4A zeolite in HCl where the Si-to-Al ratio is equal to 1.0. Framework silicon dissolves completely during Type 4A dissolution and is followed by silicate precipitation. However, for the zeolite analcime which has a Si-to-Al ratio of 2.0 dissolves non-stoichiometrically as the selective removal of aluminum results in partially dissolved silicate particles followed by silicate precipitation. In Type Y zeolite, exhibiting a Si-to-Al ratio of 3.0, there is insufficient aluminum to weaken the structure and cause silicon to dissolve in HCl. Thus, little or no precipitation is observed, and amorphous undissolvable silicate particles remain intact. The initial dissolution rates of Type Y and 4A zeolites demonstrate that dissolution is constrained by the number of available reaction sites, and a selective removal rate parameter is applied to delineate the mechanism of particle dissolution by demonstrating the kinetic influence of the Si-to-Al ratio. Zeolite framework models are constructed and used to undergird the basic dissolution mechanism. The framework models, scanning electron micrographs of partially dissolved crystals, and experimentally measured dissolution rates all demonstrate that a zeolite's Si-to-Al framework ratio plays a universal role in the dissolution mechanism, independent of framework type. Consequently, the unique mechanism of zeolite dissolution has general implications on how petroleum reservoir stimulation treatments should be designed.

UR - http://www.scopus.com/inward/record.url?scp=34249659940&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34249659940&partnerID=8YFLogxK

U2 - 10.1021/la063699g

DO - 10.1021/la063699g

M3 - Article

C2 - 17429989

AN - SCOPUS:34249659940

VL - 23

SP - 5477

EP - 5484

JO - Langmuir

JF - Langmuir

SN - 0743-7463

IS - 10

ER -