Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets

Susan R. Sesack, Chiye Aoki, Virginia M. Pickel

Research output: Contribution to journalArticle

Abstract

Potential cellular substrates for functions ascribed to the dopamine D2 receptor were examined in rat brain using immunoperoxidase for localization of a D2 receptor peptide and immunogold staining for the catecholamine biosynthetic enzyme tyrosine hydroxylase (TH). Specificity of the rat polyclonal antiserum, raised against a 15 amino acid fragment from the third intracellular loop of the D2 receptor, was shown by immunoblot analysis and by selective labeling of cultured Chinese hamster ovary cells permanently transfected with the cDNA for the D2 receptor. Although the light microscopic distribution of immunolabeling for the D2 peptide was diffuse, it was selectively localized to regions containing dopamine cells (substantia nigra and ventral tegmental area) or their forebrain projections (dorsal and ventral striatum, nucleus accumbens, and olfactory tubercles). Electron microscopic examination of the medial substantia nigra and ventral tegmental area revealed readily detectable peroxidase immunoreactivity for the D2 peptide, primarily associated with the smooth endoplasmic reticulum and plasmalemmal surfaces of dendrites. Many D2 peptide-immunoreactive dendrites also contained immunogold labeling for TH, although some dendrites were singly labeled for either marker. In the medial and dorsolateral striatum, immunoperoxidase product for the D2 peptide was localized most extensively in dendrites, with the greatest intensity of immunolabeling seen in spines. A number of striatal dendrites exhibiting D2 peptide labeling were contacted by axon terminals immunoreactive for TH. Additionally, D2 peptide immunoreactivity was distributed to some synaptic vesicles and portions of the plasmalemmal surface in unmyelinated axons and in axon terminals. Most D2 peptide-immunoreactive terminals either lacked detectable membrane specializations, or formed thin, symmetric synapses in single sections. A few D2 peptide-labeled terminals formed asymmetric junctions on dendritic spines. In dually labeled sections, most D2 peptide-immunoreactive terminals lacked detectable immunolabeling for TH. However, in fortunate planes of section, peroxidase product for D2 peptide immunoreactivity was occasionally seen in pre-terminal portions of axons whose terminal varicosities contained immunogold labeling for TH. These ultrastructural results are consistent with the localization of a dopamine D2 receptor-like protein that is strategically positioned to subserve (1) autoreceptor functions at the level of dendrites in the midbrain and presynaptic axon terminals in the striatum, as well as (2) postsynaptic actions on striatal spiny dendrites and other nondopamine terminals.

Original languageEnglish (US)
Pages (from-to)88-106
Number of pages19
JournalJournal of Neuroscience
Volume14
Issue number1
StatePublished - Jan 1994

Fingerprint

Corpus Striatum
Dopaminergic Neurons
Mesencephalon
Dendrites
Peptides
Presynaptic Terminals
Tyrosine 3-Monooxygenase
Ventral Tegmental Area
Dopamine D2 Receptors
Substantia Nigra
Peroxidase
Smooth Endoplasmic Reticulum
Autoreceptors
Dendritic Spines
Peptide Receptors
Synaptic Vesicles
Nucleus Accumbens
Prosencephalon
Cricetulus
Synapses

Keywords

  • caudate nucleus
  • dopamine
  • endoplasmic reticulum
  • receptor
  • striatum
  • substantia nigra
  • tyrosine hydroxylase
  • ultrastructure
  • ventral tegmental area

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. / Sesack, Susan R.; Aoki, Chiye; Pickel, Virginia M.

In: Journal of Neuroscience, Vol. 14, No. 1, 01.1994, p. 88-106.

Research output: Contribution to journalArticle

@article{4e2af02a2647492b9305ab78e1f612ee,
title = "Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets",
abstract = "Potential cellular substrates for functions ascribed to the dopamine D2 receptor were examined in rat brain using immunoperoxidase for localization of a D2 receptor peptide and immunogold staining for the catecholamine biosynthetic enzyme tyrosine hydroxylase (TH). Specificity of the rat polyclonal antiserum, raised against a 15 amino acid fragment from the third intracellular loop of the D2 receptor, was shown by immunoblot analysis and by selective labeling of cultured Chinese hamster ovary cells permanently transfected with the cDNA for the D2 receptor. Although the light microscopic distribution of immunolabeling for the D2 peptide was diffuse, it was selectively localized to regions containing dopamine cells (substantia nigra and ventral tegmental area) or their forebrain projections (dorsal and ventral striatum, nucleus accumbens, and olfactory tubercles). Electron microscopic examination of the medial substantia nigra and ventral tegmental area revealed readily detectable peroxidase immunoreactivity for the D2 peptide, primarily associated with the smooth endoplasmic reticulum and plasmalemmal surfaces of dendrites. Many D2 peptide-immunoreactive dendrites also contained immunogold labeling for TH, although some dendrites were singly labeled for either marker. In the medial and dorsolateral striatum, immunoperoxidase product for the D2 peptide was localized most extensively in dendrites, with the greatest intensity of immunolabeling seen in spines. A number of striatal dendrites exhibiting D2 peptide labeling were contacted by axon terminals immunoreactive for TH. Additionally, D2 peptide immunoreactivity was distributed to some synaptic vesicles and portions of the plasmalemmal surface in unmyelinated axons and in axon terminals. Most D2 peptide-immunoreactive terminals either lacked detectable membrane specializations, or formed thin, symmetric synapses in single sections. A few D2 peptide-labeled terminals formed asymmetric junctions on dendritic spines. In dually labeled sections, most D2 peptide-immunoreactive terminals lacked detectable immunolabeling for TH. However, in fortunate planes of section, peroxidase product for D2 peptide immunoreactivity was occasionally seen in pre-terminal portions of axons whose terminal varicosities contained immunogold labeling for TH. These ultrastructural results are consistent with the localization of a dopamine D2 receptor-like protein that is strategically positioned to subserve (1) autoreceptor functions at the level of dendrites in the midbrain and presynaptic axon terminals in the striatum, as well as (2) postsynaptic actions on striatal spiny dendrites and other nondopamine terminals.",
keywords = "caudate nucleus, dopamine, endoplasmic reticulum, receptor, striatum, substantia nigra, tyrosine hydroxylase, ultrastructure, ventral tegmental area",
author = "Sesack, {Susan R.} and Chiye Aoki and Pickel, {Virginia M.}",
year = "1994",
month = "1",
language = "English (US)",
volume = "14",
pages = "88--106",
journal = "Journal of Neuroscience",
issn = "0270-6474",
publisher = "Society for Neuroscience",
number = "1",

}

TY - JOUR

T1 - Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets

AU - Sesack, Susan R.

AU - Aoki, Chiye

AU - Pickel, Virginia M.

PY - 1994/1

Y1 - 1994/1

N2 - Potential cellular substrates for functions ascribed to the dopamine D2 receptor were examined in rat brain using immunoperoxidase for localization of a D2 receptor peptide and immunogold staining for the catecholamine biosynthetic enzyme tyrosine hydroxylase (TH). Specificity of the rat polyclonal antiserum, raised against a 15 amino acid fragment from the third intracellular loop of the D2 receptor, was shown by immunoblot analysis and by selective labeling of cultured Chinese hamster ovary cells permanently transfected with the cDNA for the D2 receptor. Although the light microscopic distribution of immunolabeling for the D2 peptide was diffuse, it was selectively localized to regions containing dopamine cells (substantia nigra and ventral tegmental area) or their forebrain projections (dorsal and ventral striatum, nucleus accumbens, and olfactory tubercles). Electron microscopic examination of the medial substantia nigra and ventral tegmental area revealed readily detectable peroxidase immunoreactivity for the D2 peptide, primarily associated with the smooth endoplasmic reticulum and plasmalemmal surfaces of dendrites. Many D2 peptide-immunoreactive dendrites also contained immunogold labeling for TH, although some dendrites were singly labeled for either marker. In the medial and dorsolateral striatum, immunoperoxidase product for the D2 peptide was localized most extensively in dendrites, with the greatest intensity of immunolabeling seen in spines. A number of striatal dendrites exhibiting D2 peptide labeling were contacted by axon terminals immunoreactive for TH. Additionally, D2 peptide immunoreactivity was distributed to some synaptic vesicles and portions of the plasmalemmal surface in unmyelinated axons and in axon terminals. Most D2 peptide-immunoreactive terminals either lacked detectable membrane specializations, or formed thin, symmetric synapses in single sections. A few D2 peptide-labeled terminals formed asymmetric junctions on dendritic spines. In dually labeled sections, most D2 peptide-immunoreactive terminals lacked detectable immunolabeling for TH. However, in fortunate planes of section, peroxidase product for D2 peptide immunoreactivity was occasionally seen in pre-terminal portions of axons whose terminal varicosities contained immunogold labeling for TH. These ultrastructural results are consistent with the localization of a dopamine D2 receptor-like protein that is strategically positioned to subserve (1) autoreceptor functions at the level of dendrites in the midbrain and presynaptic axon terminals in the striatum, as well as (2) postsynaptic actions on striatal spiny dendrites and other nondopamine terminals.

AB - Potential cellular substrates for functions ascribed to the dopamine D2 receptor were examined in rat brain using immunoperoxidase for localization of a D2 receptor peptide and immunogold staining for the catecholamine biosynthetic enzyme tyrosine hydroxylase (TH). Specificity of the rat polyclonal antiserum, raised against a 15 amino acid fragment from the third intracellular loop of the D2 receptor, was shown by immunoblot analysis and by selective labeling of cultured Chinese hamster ovary cells permanently transfected with the cDNA for the D2 receptor. Although the light microscopic distribution of immunolabeling for the D2 peptide was diffuse, it was selectively localized to regions containing dopamine cells (substantia nigra and ventral tegmental area) or their forebrain projections (dorsal and ventral striatum, nucleus accumbens, and olfactory tubercles). Electron microscopic examination of the medial substantia nigra and ventral tegmental area revealed readily detectable peroxidase immunoreactivity for the D2 peptide, primarily associated with the smooth endoplasmic reticulum and plasmalemmal surfaces of dendrites. Many D2 peptide-immunoreactive dendrites also contained immunogold labeling for TH, although some dendrites were singly labeled for either marker. In the medial and dorsolateral striatum, immunoperoxidase product for the D2 peptide was localized most extensively in dendrites, with the greatest intensity of immunolabeling seen in spines. A number of striatal dendrites exhibiting D2 peptide labeling were contacted by axon terminals immunoreactive for TH. Additionally, D2 peptide immunoreactivity was distributed to some synaptic vesicles and portions of the plasmalemmal surface in unmyelinated axons and in axon terminals. Most D2 peptide-immunoreactive terminals either lacked detectable membrane specializations, or formed thin, symmetric synapses in single sections. A few D2 peptide-labeled terminals formed asymmetric junctions on dendritic spines. In dually labeled sections, most D2 peptide-immunoreactive terminals lacked detectable immunolabeling for TH. However, in fortunate planes of section, peroxidase product for D2 peptide immunoreactivity was occasionally seen in pre-terminal portions of axons whose terminal varicosities contained immunogold labeling for TH. These ultrastructural results are consistent with the localization of a dopamine D2 receptor-like protein that is strategically positioned to subserve (1) autoreceptor functions at the level of dendrites in the midbrain and presynaptic axon terminals in the striatum, as well as (2) postsynaptic actions on striatal spiny dendrites and other nondopamine terminals.

KW - caudate nucleus

KW - dopamine

KW - endoplasmic reticulum

KW - receptor

KW - striatum

KW - substantia nigra

KW - tyrosine hydroxylase

KW - ultrastructure

KW - ventral tegmental area

UR - http://www.scopus.com/inward/record.url?scp=0028178136&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028178136&partnerID=8YFLogxK

M3 - Article

VL - 14

SP - 88

EP - 106

JO - Journal of Neuroscience

JF - Journal of Neuroscience

SN - 0270-6474

IS - 1

ER -