### Abstract

Let T(n, k, b) (T for Turán) denote the smallest q such that there exists a k-graph with n vertices, q edges, and no independent set of size b. Improved lower bounds are found for the function T.

Original language | English (US) |
---|---|

Pages (from-to) | 183-186 |

Number of pages | 4 |

Journal | Discrete Mathematics |

Volume | 2 |

Issue number | 2 |

DOIs | |

State | Published - 1972 |

### Fingerprint

### ASJC Scopus subject areas

- Discrete Mathematics and Combinatorics
- Theoretical Computer Science

### Cite this

*Discrete Mathematics*,

*2*(2), 183-186. https://doi.org/10.1016/0012-365X(72)90084-2

**Turán's theorem for k-graphs.** / Spencer, Joel.

Research output: Contribution to journal › Article

*Discrete Mathematics*, vol. 2, no. 2, pp. 183-186. https://doi.org/10.1016/0012-365X(72)90084-2

}

TY - JOUR

T1 - Turán's theorem for k-graphs

AU - Spencer, Joel

PY - 1972

Y1 - 1972

N2 - Let T(n, k, b) (T for Turán) denote the smallest q such that there exists a k-graph with n vertices, q edges, and no independent set of size b. Improved lower bounds are found for the function T.

AB - Let T(n, k, b) (T for Turán) denote the smallest q such that there exists a k-graph with n vertices, q edges, and no independent set of size b. Improved lower bounds are found for the function T.

UR - http://www.scopus.com/inward/record.url?scp=0011610141&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0011610141&partnerID=8YFLogxK

U2 - 10.1016/0012-365X(72)90084-2

DO - 10.1016/0012-365X(72)90084-2

M3 - Article

AN - SCOPUS:0011610141

VL - 2

SP - 183

EP - 186

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 2

ER -