TY - JOUR

T1 - Time-independent stochastic quantization, Dyson-Schwinger equations, and infrared critical exponents in QCD

AU - Zwanziger, Daniel

PY - 2003/1/1

Y1 - 2003/1/1

N2 - We derive the equations of time-independent stochastic quantization, without reference to an unphysical fifth time, from the principle of gauge equivalence. It asserts that probability distributions P that give the same expectation values for gauge-invariant observables [Formula Presented] are physically indistinguishable. This method escapes the Gribov critique. We derive an exact system of equations that closely resembles the Dyson-Schwinger equations of Faddeev-Popov theory. The system is truncated and solved nonperturbatively, by means of a power law ansatz, for the critical exponents that characterize the asymptotic form at [Formula Presented] of the gluon propagator in Landau gauge. For the transverse and longitudinal parts, we find, respectively, [Formula Presented] suppressed and in fact vanishing, though weakly, and [Formula Presented] enhanced, with [Formula Presented] Although the longitudinal part vanishes with the gauge parameter a in the Landau-gauge limit [Formula Presented] there are vertices of order [Formula Presented] so, counterintuitively, the longitudinal part of the gluon propagator does contribute in internal lines in the Landau gauge, replacing the ghost that occurs in Faddeev-Popov theory. We compare our results with the corresponding results in Faddeev-Popov theory.

AB - We derive the equations of time-independent stochastic quantization, without reference to an unphysical fifth time, from the principle of gauge equivalence. It asserts that probability distributions P that give the same expectation values for gauge-invariant observables [Formula Presented] are physically indistinguishable. This method escapes the Gribov critique. We derive an exact system of equations that closely resembles the Dyson-Schwinger equations of Faddeev-Popov theory. The system is truncated and solved nonperturbatively, by means of a power law ansatz, for the critical exponents that characterize the asymptotic form at [Formula Presented] of the gluon propagator in Landau gauge. For the transverse and longitudinal parts, we find, respectively, [Formula Presented] suppressed and in fact vanishing, though weakly, and [Formula Presented] enhanced, with [Formula Presented] Although the longitudinal part vanishes with the gauge parameter a in the Landau-gauge limit [Formula Presented] there are vertices of order [Formula Presented] so, counterintuitively, the longitudinal part of the gluon propagator does contribute in internal lines in the Landau gauge, replacing the ghost that occurs in Faddeev-Popov theory. We compare our results with the corresponding results in Faddeev-Popov theory.

UR - http://www.scopus.com/inward/record.url?scp=84865036630&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84865036630&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.67.105001

DO - 10.1103/PhysRevD.67.105001

M3 - Article

AN - SCOPUS:84865036630

VL - 67

JO - Physical Review D - Particles, Fields, Gravitation and Cosmology

JF - Physical Review D - Particles, Fields, Gravitation and Cosmology

SN - 1550-7998

IS - 10

ER -