The XENON100 dark matter experiment

E. Aprile, K. Arisaka, Francesco Arneodo, A. Askin, L. Baudis, A. Behrens, E. Brown, J. M.R. Cardoso, B. Choi, D. Cline, S. Fattori, A. D. Ferella, K. L. Giboni, A. Kish, C. W. Lam, R. F. Lang, K. E. Lim, J. A.M. Lopes, T. Marrodán Undagoitia, Y. Mei & 15 others A. J. Melgarejo Fernandez, K. Ni, U. Oberlack, S. E.A. Orrigo, E. Pantic, G. Plante, A. C.C. Ribeiro, R. Santorelli, J. M.F. Dos Santos, M. Schumann, P. Shagin, A. Teymourian, E. Tziaferi, H. Wang, M. Yamashita

    Research output: Contribution to journalArticle

    Abstract

    The XENON100 dark matter experiment uses liquid xenon (LXe) in a time projection chamber (TPC) to search for xenon nuclear recoils resulting from the scattering of dark matter Weakly Interacting Massive Particles (WIMPs). In this paper we present a detailed description of the detector design and present performance results, as established during the commissioning phase and during the first science runs. The active target of XENON100 contains 62 kg of LXe, surrounded by an LXe veto of 99 kg, both instrumented with photomultiplier tubes (PMTs) operating inside the liquid or in xenon gas. The LXe target and veto are contained in a low-radioactivity stainless steel vessel, embedded in a passive radiation shield and is installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), Italy. The experiment has recently published results from a 100 live-days dark matter search. The ultimate design goal of XENON100 is to achieve a spin-independent WIMP-nucleon scattering cross section sensitivity of σ = 2 × 10 -45 cm 2 for a 100 GeV/c 2 WIMP.

    Original languageEnglish (US)
    Pages (from-to)573-590
    Number of pages18
    JournalAstroparticle Physics
    Volume35
    Issue number9
    DOIs
    StatePublished - Apr 1 2012

    Fingerprint

    xenon
    dark matter
    weakly interacting massive particles
    liquids
    photomultiplier tubes
    radioactivity
    Italy
    scattering cross sections
    vessels
    stainless steels
    chambers
    projection
    sensitivity
    detectors
    radiation
    scattering
    gases

    Keywords

    • Dark matter
    • Direct detection
    • Liquid noble gas detector
    • XENON

    ASJC Scopus subject areas

    • Astronomy and Astrophysics

    Cite this

    Aprile, E., Arisaka, K., Arneodo, F., Askin, A., Baudis, L., Behrens, A., ... Yamashita, M. (2012). The XENON100 dark matter experiment. Astroparticle Physics, 35(9), 573-590. https://doi.org/10.1016/j.astropartphys.2012.01.003

    The XENON100 dark matter experiment. / Aprile, E.; Arisaka, K.; Arneodo, Francesco; Askin, A.; Baudis, L.; Behrens, A.; Brown, E.; Cardoso, J. M.R.; Choi, B.; Cline, D.; Fattori, S.; Ferella, A. D.; Giboni, K. L.; Kish, A.; Lam, C. W.; Lang, R. F.; Lim, K. E.; Lopes, J. A.M.; Marrodán Undagoitia, T.; Mei, Y.; Melgarejo Fernandez, A. J.; Ni, K.; Oberlack, U.; Orrigo, S. E.A.; Pantic, E.; Plante, G.; Ribeiro, A. C.C.; Santorelli, R.; Dos Santos, J. M.F.; Schumann, M.; Shagin, P.; Teymourian, A.; Tziaferi, E.; Wang, H.; Yamashita, M.

    In: Astroparticle Physics, Vol. 35, No. 9, 01.04.2012, p. 573-590.

    Research output: Contribution to journalArticle

    Aprile, E, Arisaka, K, Arneodo, F, Askin, A, Baudis, L, Behrens, A, Brown, E, Cardoso, JMR, Choi, B, Cline, D, Fattori, S, Ferella, AD, Giboni, KL, Kish, A, Lam, CW, Lang, RF, Lim, KE, Lopes, JAM, Marrodán Undagoitia, T, Mei, Y, Melgarejo Fernandez, AJ, Ni, K, Oberlack, U, Orrigo, SEA, Pantic, E, Plante, G, Ribeiro, ACC, Santorelli, R, Dos Santos, JMF, Schumann, M, Shagin, P, Teymourian, A, Tziaferi, E, Wang, H & Yamashita, M 2012, 'The XENON100 dark matter experiment', Astroparticle Physics, vol. 35, no. 9, pp. 573-590. https://doi.org/10.1016/j.astropartphys.2012.01.003
    Aprile E, Arisaka K, Arneodo F, Askin A, Baudis L, Behrens A et al. The XENON100 dark matter experiment. Astroparticle Physics. 2012 Apr 1;35(9):573-590. https://doi.org/10.1016/j.astropartphys.2012.01.003
    Aprile, E. ; Arisaka, K. ; Arneodo, Francesco ; Askin, A. ; Baudis, L. ; Behrens, A. ; Brown, E. ; Cardoso, J. M.R. ; Choi, B. ; Cline, D. ; Fattori, S. ; Ferella, A. D. ; Giboni, K. L. ; Kish, A. ; Lam, C. W. ; Lang, R. F. ; Lim, K. E. ; Lopes, J. A.M. ; Marrodán Undagoitia, T. ; Mei, Y. ; Melgarejo Fernandez, A. J. ; Ni, K. ; Oberlack, U. ; Orrigo, S. E.A. ; Pantic, E. ; Plante, G. ; Ribeiro, A. C.C. ; Santorelli, R. ; Dos Santos, J. M.F. ; Schumann, M. ; Shagin, P. ; Teymourian, A. ; Tziaferi, E. ; Wang, H. ; Yamashita, M. / The XENON100 dark matter experiment. In: Astroparticle Physics. 2012 ; Vol. 35, No. 9. pp. 573-590.
    @article{f48d378a4c4341d98695eaaaacea0977,
    title = "The XENON100 dark matter experiment",
    abstract = "The XENON100 dark matter experiment uses liquid xenon (LXe) in a time projection chamber (TPC) to search for xenon nuclear recoils resulting from the scattering of dark matter Weakly Interacting Massive Particles (WIMPs). In this paper we present a detailed description of the detector design and present performance results, as established during the commissioning phase and during the first science runs. The active target of XENON100 contains 62 kg of LXe, surrounded by an LXe veto of 99 kg, both instrumented with photomultiplier tubes (PMTs) operating inside the liquid or in xenon gas. The LXe target and veto are contained in a low-radioactivity stainless steel vessel, embedded in a passive radiation shield and is installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), Italy. The experiment has recently published results from a 100 live-days dark matter search. The ultimate design goal of XENON100 is to achieve a spin-independent WIMP-nucleon scattering cross section sensitivity of σ = 2 × 10 -45 cm 2 for a 100 GeV/c 2 WIMP.",
    keywords = "Dark matter, Direct detection, Liquid noble gas detector, XENON",
    author = "E. Aprile and K. Arisaka and Francesco Arneodo and A. Askin and L. Baudis and A. Behrens and E. Brown and Cardoso, {J. M.R.} and B. Choi and D. Cline and S. Fattori and Ferella, {A. D.} and Giboni, {K. L.} and A. Kish and Lam, {C. W.} and Lang, {R. F.} and Lim, {K. E.} and Lopes, {J. A.M.} and {Marrod{\'a}n Undagoitia}, T. and Y. Mei and {Melgarejo Fernandez}, {A. J.} and K. Ni and U. Oberlack and Orrigo, {S. E.A.} and E. Pantic and G. Plante and Ribeiro, {A. C.C.} and R. Santorelli and {Dos Santos}, {J. M.F.} and M. Schumann and P. Shagin and A. Teymourian and E. Tziaferi and H. Wang and M. Yamashita",
    year = "2012",
    month = "4",
    day = "1",
    doi = "10.1016/j.astropartphys.2012.01.003",
    language = "English (US)",
    volume = "35",
    pages = "573--590",
    journal = "Astroparticle Physics",
    issn = "0927-6505",
    publisher = "Elsevier",
    number = "9",

    }

    TY - JOUR

    T1 - The XENON100 dark matter experiment

    AU - Aprile, E.

    AU - Arisaka, K.

    AU - Arneodo, Francesco

    AU - Askin, A.

    AU - Baudis, L.

    AU - Behrens, A.

    AU - Brown, E.

    AU - Cardoso, J. M.R.

    AU - Choi, B.

    AU - Cline, D.

    AU - Fattori, S.

    AU - Ferella, A. D.

    AU - Giboni, K. L.

    AU - Kish, A.

    AU - Lam, C. W.

    AU - Lang, R. F.

    AU - Lim, K. E.

    AU - Lopes, J. A.M.

    AU - Marrodán Undagoitia, T.

    AU - Mei, Y.

    AU - Melgarejo Fernandez, A. J.

    AU - Ni, K.

    AU - Oberlack, U.

    AU - Orrigo, S. E.A.

    AU - Pantic, E.

    AU - Plante, G.

    AU - Ribeiro, A. C.C.

    AU - Santorelli, R.

    AU - Dos Santos, J. M.F.

    AU - Schumann, M.

    AU - Shagin, P.

    AU - Teymourian, A.

    AU - Tziaferi, E.

    AU - Wang, H.

    AU - Yamashita, M.

    PY - 2012/4/1

    Y1 - 2012/4/1

    N2 - The XENON100 dark matter experiment uses liquid xenon (LXe) in a time projection chamber (TPC) to search for xenon nuclear recoils resulting from the scattering of dark matter Weakly Interacting Massive Particles (WIMPs). In this paper we present a detailed description of the detector design and present performance results, as established during the commissioning phase and during the first science runs. The active target of XENON100 contains 62 kg of LXe, surrounded by an LXe veto of 99 kg, both instrumented with photomultiplier tubes (PMTs) operating inside the liquid or in xenon gas. The LXe target and veto are contained in a low-radioactivity stainless steel vessel, embedded in a passive radiation shield and is installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), Italy. The experiment has recently published results from a 100 live-days dark matter search. The ultimate design goal of XENON100 is to achieve a spin-independent WIMP-nucleon scattering cross section sensitivity of σ = 2 × 10 -45 cm 2 for a 100 GeV/c 2 WIMP.

    AB - The XENON100 dark matter experiment uses liquid xenon (LXe) in a time projection chamber (TPC) to search for xenon nuclear recoils resulting from the scattering of dark matter Weakly Interacting Massive Particles (WIMPs). In this paper we present a detailed description of the detector design and present performance results, as established during the commissioning phase and during the first science runs. The active target of XENON100 contains 62 kg of LXe, surrounded by an LXe veto of 99 kg, both instrumented with photomultiplier tubes (PMTs) operating inside the liquid or in xenon gas. The LXe target and veto are contained in a low-radioactivity stainless steel vessel, embedded in a passive radiation shield and is installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), Italy. The experiment has recently published results from a 100 live-days dark matter search. The ultimate design goal of XENON100 is to achieve a spin-independent WIMP-nucleon scattering cross section sensitivity of σ = 2 × 10 -45 cm 2 for a 100 GeV/c 2 WIMP.

    KW - Dark matter

    KW - Direct detection

    KW - Liquid noble gas detector

    KW - XENON

    UR - http://www.scopus.com/inward/record.url?scp=84862777066&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84862777066&partnerID=8YFLogxK

    U2 - 10.1016/j.astropartphys.2012.01.003

    DO - 10.1016/j.astropartphys.2012.01.003

    M3 - Article

    VL - 35

    SP - 573

    EP - 590

    JO - Astroparticle Physics

    JF - Astroparticle Physics

    SN - 0927-6505

    IS - 9

    ER -