The singular set of an energy minimizing map from B 4 to S 2

Robert Hardt, Fang Hua Lin

Research output: Contribution to journalArticle

Abstract

The singular set of an energy minimizing map from a four dimensional domain to S 2 consists locally of a finite set and a finite union of Hölder continuous curves.

Original languageEnglish (US)
Pages (from-to)275-289
Number of pages15
JournalManuscripta Mathematica
Volume69
Issue number1
DOIs
StatePublished - Dec 1990

Fingerprint

Singular Set
Finite Set
Union
Curve
Energy

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

The singular set of an energy minimizing map from B 4 to S 2 . / Hardt, Robert; Lin, Fang Hua.

In: Manuscripta Mathematica, Vol. 69, No. 1, 12.1990, p. 275-289.

Research output: Contribution to journalArticle

@article{195be437f4bc4cbea2e6c7a495903e4c,
title = "The singular set of an energy minimizing map from B 4 to S 2",
abstract = "The singular set of an energy minimizing map from a four dimensional domain to S 2 consists locally of a finite set and a finite union of H{\"o}lder continuous curves.",
author = "Robert Hardt and Lin, {Fang Hua}",
year = "1990",
month = "12",
doi = "10.1007/BF02567926",
language = "English (US)",
volume = "69",
pages = "275--289",
journal = "Manuscripta Mathematica",
issn = "0025-2611",
publisher = "Springer New York",
number = "1",

}

TY - JOUR

T1 - The singular set of an energy minimizing map from B 4 to S 2

AU - Hardt, Robert

AU - Lin, Fang Hua

PY - 1990/12

Y1 - 1990/12

N2 - The singular set of an energy minimizing map from a four dimensional domain to S 2 consists locally of a finite set and a finite union of Hölder continuous curves.

AB - The singular set of an energy minimizing map from a four dimensional domain to S 2 consists locally of a finite set and a finite union of Hölder continuous curves.

UR - http://www.scopus.com/inward/record.url?scp=51249176184&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=51249176184&partnerID=8YFLogxK

U2 - 10.1007/BF02567926

DO - 10.1007/BF02567926

M3 - Article

VL - 69

SP - 275

EP - 289

JO - Manuscripta Mathematica

JF - Manuscripta Mathematica

SN - 0025-2611

IS - 1

ER -