The selfconsistent Pauli equation

Nader Masmoudi, Norbert J. Mauser

Research output: Contribution to journalArticle

Abstract

We deal with consistent first order non-relativistic corrections (i.e. in the small parameter ε = 1/c, where c is the speed of light) of the Dirac-Maxwell system. We discuss a selfconsistent modeling of the Pauli equation as the O(ε) approximation of the Dirac equation. We suggest a coupling to the "magnetostatic" O(ε) approximation of the Maxwell equations consisting of Poisson equations for the four components of the potential. We sketch the semiclassical/nonrelativistic limits of this model.

Original languageEnglish (US)
Pages (from-to)19-24
Number of pages6
JournalMonatshefte fur Mathematik
Volume132
Issue number1
DOIs
StatePublished - 2001

Fingerprint

Non-relativistic Limit
Magnetostatics
Maxwell System
Semiclassical Limit
Dirac Equation
Approximation
Poisson's equation
Maxwell's equations
Small Parameter
Paul Adrien Maurice Dirac
First-order
Modeling
Model

Keywords

  • Dirac equation
  • Maxwell equation
  • Nonlinear PDE
  • Nonrelativistic limit
  • Poisson equation

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

The selfconsistent Pauli equation. / Masmoudi, Nader; Mauser, Norbert J.

In: Monatshefte fur Mathematik, Vol. 132, No. 1, 2001, p. 19-24.

Research output: Contribution to journalArticle

Masmoudi, Nader ; Mauser, Norbert J. / The selfconsistent Pauli equation. In: Monatshefte fur Mathematik. 2001 ; Vol. 132, No. 1. pp. 19-24.
@article{38610ee8992e4703a9d4ab51d80178e5,
title = "The selfconsistent Pauli equation",
abstract = "We deal with consistent first order non-relativistic corrections (i.e. in the small parameter ε = 1/c, where c is the speed of light) of the Dirac-Maxwell system. We discuss a selfconsistent modeling of the Pauli equation as the O(ε) approximation of the Dirac equation. We suggest a coupling to the {"}magnetostatic{"} O(ε) approximation of the Maxwell equations consisting of Poisson equations for the four components of the potential. We sketch the semiclassical/nonrelativistic limits of this model.",
keywords = "Dirac equation, Maxwell equation, Nonlinear PDE, Nonrelativistic limit, Poisson equation",
author = "Nader Masmoudi and Mauser, {Norbert J.}",
year = "2001",
doi = "10.1007/s006050170055",
language = "English (US)",
volume = "132",
pages = "19--24",
journal = "Monatshefte fur Mathematik",
issn = "0026-9255",
publisher = "Springer Wien",
number = "1",

}

TY - JOUR

T1 - The selfconsistent Pauli equation

AU - Masmoudi, Nader

AU - Mauser, Norbert J.

PY - 2001

Y1 - 2001

N2 - We deal with consistent first order non-relativistic corrections (i.e. in the small parameter ε = 1/c, where c is the speed of light) of the Dirac-Maxwell system. We discuss a selfconsistent modeling of the Pauli equation as the O(ε) approximation of the Dirac equation. We suggest a coupling to the "magnetostatic" O(ε) approximation of the Maxwell equations consisting of Poisson equations for the four components of the potential. We sketch the semiclassical/nonrelativistic limits of this model.

AB - We deal with consistent first order non-relativistic corrections (i.e. in the small parameter ε = 1/c, where c is the speed of light) of the Dirac-Maxwell system. We discuss a selfconsistent modeling of the Pauli equation as the O(ε) approximation of the Dirac equation. We suggest a coupling to the "magnetostatic" O(ε) approximation of the Maxwell equations consisting of Poisson equations for the four components of the potential. We sketch the semiclassical/nonrelativistic limits of this model.

KW - Dirac equation

KW - Maxwell equation

KW - Nonlinear PDE

KW - Nonrelativistic limit

KW - Poisson equation

UR - http://www.scopus.com/inward/record.url?scp=0035664744&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035664744&partnerID=8YFLogxK

U2 - 10.1007/s006050170055

DO - 10.1007/s006050170055

M3 - Article

AN - SCOPUS:0035664744

VL - 132

SP - 19

EP - 24

JO - Monatshefte fur Mathematik

JF - Monatshefte fur Mathematik

SN - 0026-9255

IS - 1

ER -