The scintillation and ionization yield of liquid xenon for nuclear recoils

P. Sorensen, A. Manzur, C. E. Dahl, J. Angle, E. Aprile, Francesco Arneodo, L. Baudis, A. Bernstein, A. Bolozdynya, L. C.C. Coelho, L. DeViveiros, A. D. Ferella, L. M.P. Fernandes, S. Fiorucci, R. J. Gaitskell, K. L. Giboni, R. Gomez, R. Hasty, L. Kastens, J. Kwong & 16 others J. A.M. Lopes, N. Madden, A. Manalaysay, D. N. McKinsey, M. E. Monzani, K. Ni, U. Oberlack, J. Orboeck, G. Plante, R. Santorelli, J. M.F. dos Santos, P. Shagin, T. Shutt, S. Schulte, C. Winant, M. Yamashita

    Research output: Contribution to journalArticle

    Abstract

    XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S 1) and ionization signal (S 2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield Leff and the absolute ionization yield Qy, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of Leff is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our Leff measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is ∼ 4 keV. A knowledge of the ionization yield Qy is necessary to establish the trigger threshold of the experiment. The ionization yield Qy is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.

    Original languageEnglish (US)
    Pages (from-to)339-346
    Number of pages8
    JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
    Volume601
    Issue number3
    DOIs
    StatePublished - Apr 1 2009

    Fingerprint

    Xenon
    Scintillation
    xenon
    scintillation
    Ionization
    ionization
    Liquids
    liquids
    dark matter
    thresholds
    Particle interactions
    energy
    Experiments
    Nuclear energy
    Deposits
    particle interactions
    Scattering
    Imaging techniques
    liquid phases
    actuators

    Keywords

    • Dark matter
    • Liquid xenon
    • Nuclear recoil
    • Scintillation quenching
    • Time-projection chamber

    ASJC Scopus subject areas

    • Nuclear and High Energy Physics
    • Instrumentation

    Cite this

    The scintillation and ionization yield of liquid xenon for nuclear recoils. / Sorensen, P.; Manzur, A.; Dahl, C. E.; Angle, J.; Aprile, E.; Arneodo, Francesco; Baudis, L.; Bernstein, A.; Bolozdynya, A.; Coelho, L. C.C.; DeViveiros, L.; Ferella, A. D.; Fernandes, L. M.P.; Fiorucci, S.; Gaitskell, R. J.; Giboni, K. L.; Gomez, R.; Hasty, R.; Kastens, L.; Kwong, J.; Lopes, J. A.M.; Madden, N.; Manalaysay, A.; McKinsey, D. N.; Monzani, M. E.; Ni, K.; Oberlack, U.; Orboeck, J.; Plante, G.; Santorelli, R.; dos Santos, J. M.F.; Shagin, P.; Shutt, T.; Schulte, S.; Winant, C.; Yamashita, M.

    In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 601, No. 3, 01.04.2009, p. 339-346.

    Research output: Contribution to journalArticle

    Sorensen, P, Manzur, A, Dahl, CE, Angle, J, Aprile, E, Arneodo, F, Baudis, L, Bernstein, A, Bolozdynya, A, Coelho, LCC, DeViveiros, L, Ferella, AD, Fernandes, LMP, Fiorucci, S, Gaitskell, RJ, Giboni, KL, Gomez, R, Hasty, R, Kastens, L, Kwong, J, Lopes, JAM, Madden, N, Manalaysay, A, McKinsey, DN, Monzani, ME, Ni, K, Oberlack, U, Orboeck, J, Plante, G, Santorelli, R, dos Santos, JMF, Shagin, P, Shutt, T, Schulte, S, Winant, C & Yamashita, M 2009, 'The scintillation and ionization yield of liquid xenon for nuclear recoils', Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 601, no. 3, pp. 339-346. https://doi.org/10.1016/j.nima.2008.12.197
    Sorensen, P. ; Manzur, A. ; Dahl, C. E. ; Angle, J. ; Aprile, E. ; Arneodo, Francesco ; Baudis, L. ; Bernstein, A. ; Bolozdynya, A. ; Coelho, L. C.C. ; DeViveiros, L. ; Ferella, A. D. ; Fernandes, L. M.P. ; Fiorucci, S. ; Gaitskell, R. J. ; Giboni, K. L. ; Gomez, R. ; Hasty, R. ; Kastens, L. ; Kwong, J. ; Lopes, J. A.M. ; Madden, N. ; Manalaysay, A. ; McKinsey, D. N. ; Monzani, M. E. ; Ni, K. ; Oberlack, U. ; Orboeck, J. ; Plante, G. ; Santorelli, R. ; dos Santos, J. M.F. ; Shagin, P. ; Shutt, T. ; Schulte, S. ; Winant, C. ; Yamashita, M. / The scintillation and ionization yield of liquid xenon for nuclear recoils. In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2009 ; Vol. 601, No. 3. pp. 339-346.
    @article{1b5de50511ae496aaad7cdd7796696bf,
    title = "The scintillation and ionization yield of liquid xenon for nuclear recoils",
    abstract = "XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S 1) and ionization signal (S 2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield Leff and the absolute ionization yield Qy, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of Leff is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our Leff measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is ∼ 4 keV. A knowledge of the ionization yield Qy is necessary to establish the trigger threshold of the experiment. The ionization yield Qy is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.",
    keywords = "Dark matter, Liquid xenon, Nuclear recoil, Scintillation quenching, Time-projection chamber",
    author = "P. Sorensen and A. Manzur and Dahl, {C. E.} and J. Angle and E. Aprile and Francesco Arneodo and L. Baudis and A. Bernstein and A. Bolozdynya and Coelho, {L. C.C.} and L. DeViveiros and Ferella, {A. D.} and Fernandes, {L. M.P.} and S. Fiorucci and Gaitskell, {R. J.} and Giboni, {K. L.} and R. Gomez and R. Hasty and L. Kastens and J. Kwong and Lopes, {J. A.M.} and N. Madden and A. Manalaysay and McKinsey, {D. N.} and Monzani, {M. E.} and K. Ni and U. Oberlack and J. Orboeck and G. Plante and R. Santorelli and {dos Santos}, {J. M.F.} and P. Shagin and T. Shutt and S. Schulte and C. Winant and M. Yamashita",
    year = "2009",
    month = "4",
    day = "1",
    doi = "10.1016/j.nima.2008.12.197",
    language = "English (US)",
    volume = "601",
    pages = "339--346",
    journal = "Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment",
    issn = "0168-9002",
    publisher = "Elsevier",
    number = "3",

    }

    TY - JOUR

    T1 - The scintillation and ionization yield of liquid xenon for nuclear recoils

    AU - Sorensen, P.

    AU - Manzur, A.

    AU - Dahl, C. E.

    AU - Angle, J.

    AU - Aprile, E.

    AU - Arneodo, Francesco

    AU - Baudis, L.

    AU - Bernstein, A.

    AU - Bolozdynya, A.

    AU - Coelho, L. C.C.

    AU - DeViveiros, L.

    AU - Ferella, A. D.

    AU - Fernandes, L. M.P.

    AU - Fiorucci, S.

    AU - Gaitskell, R. J.

    AU - Giboni, K. L.

    AU - Gomez, R.

    AU - Hasty, R.

    AU - Kastens, L.

    AU - Kwong, J.

    AU - Lopes, J. A.M.

    AU - Madden, N.

    AU - Manalaysay, A.

    AU - McKinsey, D. N.

    AU - Monzani, M. E.

    AU - Ni, K.

    AU - Oberlack, U.

    AU - Orboeck, J.

    AU - Plante, G.

    AU - Santorelli, R.

    AU - dos Santos, J. M.F.

    AU - Shagin, P.

    AU - Shutt, T.

    AU - Schulte, S.

    AU - Winant, C.

    AU - Yamashita, M.

    PY - 2009/4/1

    Y1 - 2009/4/1

    N2 - XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S 1) and ionization signal (S 2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield Leff and the absolute ionization yield Qy, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of Leff is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our Leff measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is ∼ 4 keV. A knowledge of the ionization yield Qy is necessary to establish the trigger threshold of the experiment. The ionization yield Qy is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.

    AB - XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S 1) and ionization signal (S 2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield Leff and the absolute ionization yield Qy, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of Leff is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our Leff measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is ∼ 4 keV. A knowledge of the ionization yield Qy is necessary to establish the trigger threshold of the experiment. The ionization yield Qy is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.

    KW - Dark matter

    KW - Liquid xenon

    KW - Nuclear recoil

    KW - Scintillation quenching

    KW - Time-projection chamber

    UR - http://www.scopus.com/inward/record.url?scp=61649106281&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=61649106281&partnerID=8YFLogxK

    U2 - 10.1016/j.nima.2008.12.197

    DO - 10.1016/j.nima.2008.12.197

    M3 - Article

    VL - 601

    SP - 339

    EP - 346

    JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

    JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

    SN - 0168-9002

    IS - 3

    ER -