The scintillation and ionization yield of liquid xenon for nuclear recoils

P. Sorensen, A. Manzur, C. E. Dahl, J. Angle, E. Aprile, Francesco Arneodo, L. Baudis, A. Bernstein, A. Bolozdynya, L. C.C. Coelho, L. DeViveiros, A. D. Ferella, L. M.P. Fernandes, S. Fiorucci, R. J. Gaitskell, K. L. Giboni, R. Gomez, R. Hasty, L. Kastens, J. KwongJ. A.M. Lopes, N. Madden, A. Manalaysay, D. N. McKinsey, M. E. Monzani, K. Ni, U. Oberlack, J. Orboeck, G. Plante, R. Santorelli, J. M.F. dos Santos, P. Shagin, T. Shutt, S. Schulte, C. Winant, M. Yamashita

Research output: Contribution to journalArticle

Abstract

XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S 1) and ionization signal (S 2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield Leff and the absolute ionization yield Qy, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of Leff is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our Leff measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is ∼ 4 keV. A knowledge of the ionization yield Qy is necessary to establish the trigger threshold of the experiment. The ionization yield Qy is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.

Original languageEnglish (US)
Pages (from-to)339-346
Number of pages8
JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume601
Issue number3
DOIs
StatePublished - Apr 1 2009

Fingerprint

Xenon
Scintillation
xenon
scintillation
Ionization
ionization
Liquids
liquids
dark matter
thresholds
Particle interactions
energy
Experiments
Nuclear energy
Deposits
particle interactions
Scattering
Imaging techniques
liquid phases
actuators

Keywords

  • Dark matter
  • Liquid xenon
  • Nuclear recoil
  • Scintillation quenching
  • Time-projection chamber

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Instrumentation

Cite this

The scintillation and ionization yield of liquid xenon for nuclear recoils. / Sorensen, P.; Manzur, A.; Dahl, C. E.; Angle, J.; Aprile, E.; Arneodo, Francesco; Baudis, L.; Bernstein, A.; Bolozdynya, A.; Coelho, L. C.C.; DeViveiros, L.; Ferella, A. D.; Fernandes, L. M.P.; Fiorucci, S.; Gaitskell, R. J.; Giboni, K. L.; Gomez, R.; Hasty, R.; Kastens, L.; Kwong, J.; Lopes, J. A.M.; Madden, N.; Manalaysay, A.; McKinsey, D. N.; Monzani, M. E.; Ni, K.; Oberlack, U.; Orboeck, J.; Plante, G.; Santorelli, R.; dos Santos, J. M.F.; Shagin, P.; Shutt, T.; Schulte, S.; Winant, C.; Yamashita, M.

In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 601, No. 3, 01.04.2009, p. 339-346.

Research output: Contribution to journalArticle

Sorensen, P, Manzur, A, Dahl, CE, Angle, J, Aprile, E, Arneodo, F, Baudis, L, Bernstein, A, Bolozdynya, A, Coelho, LCC, DeViveiros, L, Ferella, AD, Fernandes, LMP, Fiorucci, S, Gaitskell, RJ, Giboni, KL, Gomez, R, Hasty, R, Kastens, L, Kwong, J, Lopes, JAM, Madden, N, Manalaysay, A, McKinsey, DN, Monzani, ME, Ni, K, Oberlack, U, Orboeck, J, Plante, G, Santorelli, R, dos Santos, JMF, Shagin, P, Shutt, T, Schulte, S, Winant, C & Yamashita, M 2009, 'The scintillation and ionization yield of liquid xenon for nuclear recoils', Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 601, no. 3, pp. 339-346. https://doi.org/10.1016/j.nima.2008.12.197
Sorensen, P. ; Manzur, A. ; Dahl, C. E. ; Angle, J. ; Aprile, E. ; Arneodo, Francesco ; Baudis, L. ; Bernstein, A. ; Bolozdynya, A. ; Coelho, L. C.C. ; DeViveiros, L. ; Ferella, A. D. ; Fernandes, L. M.P. ; Fiorucci, S. ; Gaitskell, R. J. ; Giboni, K. L. ; Gomez, R. ; Hasty, R. ; Kastens, L. ; Kwong, J. ; Lopes, J. A.M. ; Madden, N. ; Manalaysay, A. ; McKinsey, D. N. ; Monzani, M. E. ; Ni, K. ; Oberlack, U. ; Orboeck, J. ; Plante, G. ; Santorelli, R. ; dos Santos, J. M.F. ; Shagin, P. ; Shutt, T. ; Schulte, S. ; Winant, C. ; Yamashita, M. / The scintillation and ionization yield of liquid xenon for nuclear recoils. In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2009 ; Vol. 601, No. 3. pp. 339-346.
@article{1b5de50511ae496aaad7cdd7796696bf,
title = "The scintillation and ionization yield of liquid xenon for nuclear recoils",
abstract = "XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S 1) and ionization signal (S 2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield Leff and the absolute ionization yield Qy, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of Leff is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our Leff measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is ∼ 4 keV. A knowledge of the ionization yield Qy is necessary to establish the trigger threshold of the experiment. The ionization yield Qy is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.",
keywords = "Dark matter, Liquid xenon, Nuclear recoil, Scintillation quenching, Time-projection chamber",
author = "P. Sorensen and A. Manzur and Dahl, {C. E.} and J. Angle and E. Aprile and Francesco Arneodo and L. Baudis and A. Bernstein and A. Bolozdynya and Coelho, {L. C.C.} and L. DeViveiros and Ferella, {A. D.} and Fernandes, {L. M.P.} and S. Fiorucci and Gaitskell, {R. J.} and Giboni, {K. L.} and R. Gomez and R. Hasty and L. Kastens and J. Kwong and Lopes, {J. A.M.} and N. Madden and A. Manalaysay and McKinsey, {D. N.} and Monzani, {M. E.} and K. Ni and U. Oberlack and J. Orboeck and G. Plante and R. Santorelli and {dos Santos}, {J. M.F.} and P. Shagin and T. Shutt and S. Schulte and C. Winant and M. Yamashita",
year = "2009",
month = "4",
day = "1",
doi = "10.1016/j.nima.2008.12.197",
language = "English (US)",
volume = "601",
pages = "339--346",
journal = "Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment",
issn = "0168-9002",
publisher = "Elsevier",
number = "3",

}

TY - JOUR

T1 - The scintillation and ionization yield of liquid xenon for nuclear recoils

AU - Sorensen, P.

AU - Manzur, A.

AU - Dahl, C. E.

AU - Angle, J.

AU - Aprile, E.

AU - Arneodo, Francesco

AU - Baudis, L.

AU - Bernstein, A.

AU - Bolozdynya, A.

AU - Coelho, L. C.C.

AU - DeViveiros, L.

AU - Ferella, A. D.

AU - Fernandes, L. M.P.

AU - Fiorucci, S.

AU - Gaitskell, R. J.

AU - Giboni, K. L.

AU - Gomez, R.

AU - Hasty, R.

AU - Kastens, L.

AU - Kwong, J.

AU - Lopes, J. A.M.

AU - Madden, N.

AU - Manalaysay, A.

AU - McKinsey, D. N.

AU - Monzani, M. E.

AU - Ni, K.

AU - Oberlack, U.

AU - Orboeck, J.

AU - Plante, G.

AU - Santorelli, R.

AU - dos Santos, J. M.F.

AU - Shagin, P.

AU - Shutt, T.

AU - Schulte, S.

AU - Winant, C.

AU - Yamashita, M.

PY - 2009/4/1

Y1 - 2009/4/1

N2 - XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S 1) and ionization signal (S 2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield Leff and the absolute ionization yield Qy, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of Leff is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our Leff measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is ∼ 4 keV. A knowledge of the ionization yield Qy is necessary to establish the trigger threshold of the experiment. The ionization yield Qy is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.

AB - XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S 1) and ionization signal (S 2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield Leff and the absolute ionization yield Qy, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of Leff is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our Leff measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is ∼ 4 keV. A knowledge of the ionization yield Qy is necessary to establish the trigger threshold of the experiment. The ionization yield Qy is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.

KW - Dark matter

KW - Liquid xenon

KW - Nuclear recoil

KW - Scintillation quenching

KW - Time-projection chamber

UR - http://www.scopus.com/inward/record.url?scp=61649106281&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=61649106281&partnerID=8YFLogxK

U2 - 10.1016/j.nima.2008.12.197

DO - 10.1016/j.nima.2008.12.197

M3 - Article

AN - SCOPUS:61649106281

VL - 601

SP - 339

EP - 346

JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

SN - 0168-9002

IS - 3

ER -