The PLATO 2.0 mission

H. Rauer, C. Catala, C. Aerts, T. Appourchaux, W. Benz, A. Brandeker, J. Christensen-Dalsgaard, M. Deleuil, Laurent Gizon, M. J. Goupil, M. Güdel, E. Janot-Pacheco, M. Mas-Hesse, I. Pagano, G. Piotto, D. Pollacco, Santos, A. Smith, J. C. Suárez, R. SzabóS. Udry, V. Adibekyan, Y. Alibert, J. M. Almenara, P. Amaro-Seoane, M. A.V. Eiff, M. Asplund, E. Antonello, S. Barnes, F. Baudin, K. Belkacem, M. Bergemann, G. Bihain, A. C. Birch, X. Bonfils, I. Boisse, A. S. Bonomo, F. Borsa, I. M. Brandão, E. Brocato, S. Brun, M. Burleigh, R. Burston, J. Cabrera, S. Cassisi, W. Chaplin, S. Charpinet, C. Chiappini, R. P. Church, Sz Csizmadia, M. Cunha, M. Damasso, M. B. Davies, H. J. Deeg, R. F. Díaz, S. Dreizler, C. Dreyer, P. Eggenberger, D. Ehrenreich, P. Eigmüller, A. Erikson, R. Farmer, S. Feltzing, F. de Oliveira Fialho, P. Figueira, T. Forveille, M. Fridlund, R. A. García, P. Giommi, G. Giuffrida, M. Godolt, J. Gomes da Silva, T. Granzer, J. L. Grenfell, A. Grotsch-Noels, E. Günther, C. A. Haswell, A. P. Hatzes, G. Hébrard, S. Hekker, R. Helled, K. Heng, J. M. Jenkins, A. Johansen, M. L. Khodachenko, K. G. Kislyakova, W. Kley, U. Kolb, N. Krivova, F. Kupka, H. Lammer, A. F. Lanza, Y. Lebreton, D. Magrin, P. Marcos-Arenal, P. M. Marrese, J. P. Marques, J. Martins, S. Mathis, S. Mathur, S. Messina, A. Miglio, J. Montalban, M. Montalto, M. J. P. F. G. Monteiro, H. Moradi, E. Moravveji, C. Mordasini, T. Morel, A. Mortier, V. Nascimbeni, R. P. Nelson, Martin Bo Nielsen, L. Noack, A. J. Norton, A. Ofir, M. Oshagh, R. M. Ouazzani, P. Pápics, V. C. Parro, P. Petit, B. Plez, E. Poretti, A. Quirrenbach, R. Ragazzoni, G. Raimondo, M. Rainer, D. R. Reese, R. Redmer, S. Reffert, B. Rojas-Ayala, I. W. Roxburgh, S. Salmon, A. Santerne, J. Schneider, J. Schou, S. Schuh, H. Schunker, A. Silva-Valio, R. Silvotti, I. Skillen, I. Snellen, F. Sohl, S. G. Sousa, A. Sozzetti, D. Stello, K. G. Strassmeier, M. Švanda, Gy M. Szabó, A. Tkachenko, D. Valencia, V. Van Grootel, S. D. Vauclair, P. Ventura, F. W. Wagner, N. A. Walton, J. Weingrill, S. C. Werner, P. J. Wheatley, K. Zwintz

Research output: Contribution to journalArticle

Abstract

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.

Original languageEnglish (US)
Pages (from-to)249-330
Number of pages82
JournalExperimental Astronomy
Volume38
Issue number1-2
DOIs
StatePublished - Jan 1 2014

Fingerprint

planets
planet
stars
asteroseismology
catalogs
planetary systems
European Space Agency
atmospheres
radii
atmosphere
planetary rings
stellar activity
red giant stars
orbitals
census
Neptune (planet)
terrestrial planets
stellar models
variable stars
stellar evolution

Keywords

  • Asteroseismology
  • Exoplanetary science
  • Exoplanets
  • Stellar science
  • Transit survey

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

Rauer, H., Catala, C., Aerts, C., Appourchaux, T., Benz, W., Brandeker, A., ... Zwintz, K. (2014). The PLATO 2.0 mission. Experimental Astronomy, 38(1-2), 249-330. https://doi.org/10.1007/s10686-014-9383-4

The PLATO 2.0 mission. / Rauer, H.; Catala, C.; Aerts, C.; Appourchaux, T.; Benz, W.; Brandeker, A.; Christensen-Dalsgaard, J.; Deleuil, M.; Gizon, Laurent; Goupil, M. J.; Güdel, M.; Janot-Pacheco, E.; Mas-Hesse, M.; Pagano, I.; Piotto, G.; Pollacco, D.; Santos; Smith, A.; Suárez, J. C.; Szabó, R.; Udry, S.; Adibekyan, V.; Alibert, Y.; Almenara, J. M.; Amaro-Seoane, P.; Eiff, M. A.V.; Asplund, M.; Antonello, E.; Barnes, S.; Baudin, F.; Belkacem, K.; Bergemann, M.; Bihain, G.; Birch, A. C.; Bonfils, X.; Boisse, I.; Bonomo, A. S.; Borsa, F.; Brandão, I. M.; Brocato, E.; Brun, S.; Burleigh, M.; Burston, R.; Cabrera, J.; Cassisi, S.; Chaplin, W.; Charpinet, S.; Chiappini, C.; Church, R. P.; Csizmadia, Sz; Cunha, M.; Damasso, M.; Davies, M. B.; Deeg, H. J.; Díaz, R. F.; Dreizler, S.; Dreyer, C.; Eggenberger, P.; Ehrenreich, D.; Eigmüller, P.; Erikson, A.; Farmer, R.; Feltzing, S.; de Oliveira Fialho, F.; Figueira, P.; Forveille, T.; Fridlund, M.; García, R. A.; Giommi, P.; Giuffrida, G.; Godolt, M.; da Silva, J. Gomes; Granzer, T.; Grenfell, J. L.; Grotsch-Noels, A.; Günther, E.; Haswell, C. A.; Hatzes, A. P.; Hébrard, G.; Hekker, S.; Helled, R.; Heng, K.; Jenkins, J. M.; Johansen, A.; Khodachenko, M. L.; Kislyakova, K. G.; Kley, W.; Kolb, U.; Krivova, N.; Kupka, F.; Lammer, H.; Lanza, A. F.; Lebreton, Y.; Magrin, D.; Marcos-Arenal, P.; Marrese, P. M.; Marques, J. P.; Martins, J.; Mathis, S.; Mathur, S.; Messina, S.; Miglio, A.; Montalban, J.; Montalto, M.; P. F. G. Monteiro, M. J.; Moradi, H.; Moravveji, E.; Mordasini, C.; Morel, T.; Mortier, A.; Nascimbeni, V.; Nelson, R. P.; Nielsen, Martin Bo; Noack, L.; Norton, A. J.; Ofir, A.; Oshagh, M.; Ouazzani, R. M.; Pápics, P.; Parro, V. C.; Petit, P.; Plez, B.; Poretti, E.; Quirrenbach, A.; Ragazzoni, R.; Raimondo, G.; Rainer, M.; Reese, D. R.; Redmer, R.; Reffert, S.; Rojas-Ayala, B.; Roxburgh, I. W.; Salmon, S.; Santerne, A.; Schneider, J.; Schou, J.; Schuh, S.; Schunker, H.; Silva-Valio, A.; Silvotti, R.; Skillen, I.; Snellen, I.; Sohl, F.; Sousa, S. G.; Sozzetti, A.; Stello, D.; Strassmeier, K. G.; Švanda, M.; Szabó, Gy M.; Tkachenko, A.; Valencia, D.; Van Grootel, V.; Vauclair, S. D.; Ventura, P.; Wagner, F. W.; Walton, N. A.; Weingrill, J.; Werner, S. C.; Wheatley, P. J.; Zwintz, K.

In: Experimental Astronomy, Vol. 38, No. 1-2, 01.01.2014, p. 249-330.

Research output: Contribution to journalArticle

Rauer, H, Catala, C, Aerts, C, Appourchaux, T, Benz, W, Brandeker, A, Christensen-Dalsgaard, J, Deleuil, M, Gizon, L, Goupil, MJ, Güdel, M, Janot-Pacheco, E, Mas-Hesse, M, Pagano, I, Piotto, G, Pollacco, D, Santos, Smith, A, Suárez, JC, Szabó, R, Udry, S, Adibekyan, V, Alibert, Y, Almenara, JM, Amaro-Seoane, P, Eiff, MAV, Asplund, M, Antonello, E, Barnes, S, Baudin, F, Belkacem, K, Bergemann, M, Bihain, G, Birch, AC, Bonfils, X, Boisse, I, Bonomo, AS, Borsa, F, Brandão, IM, Brocato, E, Brun, S, Burleigh, M, Burston, R, Cabrera, J, Cassisi, S, Chaplin, W, Charpinet, S, Chiappini, C, Church, RP, Csizmadia, S, Cunha, M, Damasso, M, Davies, MB, Deeg, HJ, Díaz, RF, Dreizler, S, Dreyer, C, Eggenberger, P, Ehrenreich, D, Eigmüller, P, Erikson, A, Farmer, R, Feltzing, S, de Oliveira Fialho, F, Figueira, P, Forveille, T, Fridlund, M, García, RA, Giommi, P, Giuffrida, G, Godolt, M, da Silva, JG, Granzer, T, Grenfell, JL, Grotsch-Noels, A, Günther, E, Haswell, CA, Hatzes, AP, Hébrard, G, Hekker, S, Helled, R, Heng, K, Jenkins, JM, Johansen, A, Khodachenko, ML, Kislyakova, KG, Kley, W, Kolb, U, Krivova, N, Kupka, F, Lammer, H, Lanza, AF, Lebreton, Y, Magrin, D, Marcos-Arenal, P, Marrese, PM, Marques, JP, Martins, J, Mathis, S, Mathur, S, Messina, S, Miglio, A, Montalban, J, Montalto, M, P. F. G. Monteiro, MJ, Moradi, H, Moravveji, E, Mordasini, C, Morel, T, Mortier, A, Nascimbeni, V, Nelson, RP, Nielsen, MB, Noack, L, Norton, AJ, Ofir, A, Oshagh, M, Ouazzani, RM, Pápics, P, Parro, VC, Petit, P, Plez, B, Poretti, E, Quirrenbach, A, Ragazzoni, R, Raimondo, G, Rainer, M, Reese, DR, Redmer, R, Reffert, S, Rojas-Ayala, B, Roxburgh, IW, Salmon, S, Santerne, A, Schneider, J, Schou, J, Schuh, S, Schunker, H, Silva-Valio, A, Silvotti, R, Skillen, I, Snellen, I, Sohl, F, Sousa, SG, Sozzetti, A, Stello, D, Strassmeier, KG, Švanda, M, Szabó, GM, Tkachenko, A, Valencia, D, Van Grootel, V, Vauclair, SD, Ventura, P, Wagner, FW, Walton, NA, Weingrill, J, Werner, SC, Wheatley, PJ & Zwintz, K 2014, 'The PLATO 2.0 mission', Experimental Astronomy, vol. 38, no. 1-2, pp. 249-330. https://doi.org/10.1007/s10686-014-9383-4
Rauer H, Catala C, Aerts C, Appourchaux T, Benz W, Brandeker A et al. The PLATO 2.0 mission. Experimental Astronomy. 2014 Jan 1;38(1-2):249-330. https://doi.org/10.1007/s10686-014-9383-4
Rauer, H. ; Catala, C. ; Aerts, C. ; Appourchaux, T. ; Benz, W. ; Brandeker, A. ; Christensen-Dalsgaard, J. ; Deleuil, M. ; Gizon, Laurent ; Goupil, M. J. ; Güdel, M. ; Janot-Pacheco, E. ; Mas-Hesse, M. ; Pagano, I. ; Piotto, G. ; Pollacco, D. ; Santos ; Smith, A. ; Suárez, J. C. ; Szabó, R. ; Udry, S. ; Adibekyan, V. ; Alibert, Y. ; Almenara, J. M. ; Amaro-Seoane, P. ; Eiff, M. A.V. ; Asplund, M. ; Antonello, E. ; Barnes, S. ; Baudin, F. ; Belkacem, K. ; Bergemann, M. ; Bihain, G. ; Birch, A. C. ; Bonfils, X. ; Boisse, I. ; Bonomo, A. S. ; Borsa, F. ; Brandão, I. M. ; Brocato, E. ; Brun, S. ; Burleigh, M. ; Burston, R. ; Cabrera, J. ; Cassisi, S. ; Chaplin, W. ; Charpinet, S. ; Chiappini, C. ; Church, R. P. ; Csizmadia, Sz ; Cunha, M. ; Damasso, M. ; Davies, M. B. ; Deeg, H. J. ; Díaz, R. F. ; Dreizler, S. ; Dreyer, C. ; Eggenberger, P. ; Ehrenreich, D. ; Eigmüller, P. ; Erikson, A. ; Farmer, R. ; Feltzing, S. ; de Oliveira Fialho, F. ; Figueira, P. ; Forveille, T. ; Fridlund, M. ; García, R. A. ; Giommi, P. ; Giuffrida, G. ; Godolt, M. ; da Silva, J. Gomes ; Granzer, T. ; Grenfell, J. L. ; Grotsch-Noels, A. ; Günther, E. ; Haswell, C. A. ; Hatzes, A. P. ; Hébrard, G. ; Hekker, S. ; Helled, R. ; Heng, K. ; Jenkins, J. M. ; Johansen, A. ; Khodachenko, M. L. ; Kislyakova, K. G. ; Kley, W. ; Kolb, U. ; Krivova, N. ; Kupka, F. ; Lammer, H. ; Lanza, A. F. ; Lebreton, Y. ; Magrin, D. ; Marcos-Arenal, P. ; Marrese, P. M. ; Marques, J. P. ; Martins, J. ; Mathis, S. ; Mathur, S. ; Messina, S. ; Miglio, A. ; Montalban, J. ; Montalto, M. ; P. F. G. Monteiro, M. J. ; Moradi, H. ; Moravveji, E. ; Mordasini, C. ; Morel, T. ; Mortier, A. ; Nascimbeni, V. ; Nelson, R. P. ; Nielsen, Martin Bo ; Noack, L. ; Norton, A. J. ; Ofir, A. ; Oshagh, M. ; Ouazzani, R. M. ; Pápics, P. ; Parro, V. C. ; Petit, P. ; Plez, B. ; Poretti, E. ; Quirrenbach, A. ; Ragazzoni, R. ; Raimondo, G. ; Rainer, M. ; Reese, D. R. ; Redmer, R. ; Reffert, S. ; Rojas-Ayala, B. ; Roxburgh, I. W. ; Salmon, S. ; Santerne, A. ; Schneider, J. ; Schou, J. ; Schuh, S. ; Schunker, H. ; Silva-Valio, A. ; Silvotti, R. ; Skillen, I. ; Snellen, I. ; Sohl, F. ; Sousa, S. G. ; Sozzetti, A. ; Stello, D. ; Strassmeier, K. G. ; Švanda, M. ; Szabó, Gy M. ; Tkachenko, A. ; Valencia, D. ; Van Grootel, V. ; Vauclair, S. D. ; Ventura, P. ; Wagner, F. W. ; Walton, N. A. ; Weingrill, J. ; Werner, S. C. ; Wheatley, P. J. ; Zwintz, K. / The PLATO 2.0 mission. In: Experimental Astronomy. 2014 ; Vol. 38, No. 1-2. pp. 249-330.
@article{9c0cb98a8f7d4d8e9ec5d1c3562e6668,
title = "The PLATO 2.0 mission",
abstract = "PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 {\%}, 4–10 {\%} and 10 {\%} for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 {\%} of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.",
keywords = "Asteroseismology, Exoplanetary science, Exoplanets, Stellar science, Transit survey",
author = "H. Rauer and C. Catala and C. Aerts and T. Appourchaux and W. Benz and A. Brandeker and J. Christensen-Dalsgaard and M. Deleuil and Laurent Gizon and Goupil, {M. J.} and M. G{\"u}del and E. Janot-Pacheco and M. Mas-Hesse and I. Pagano and G. Piotto and D. Pollacco and Santos and A. Smith and Su{\'a}rez, {J. C.} and R. Szab{\'o} and S. Udry and V. Adibekyan and Y. Alibert and Almenara, {J. M.} and P. Amaro-Seoane and Eiff, {M. A.V.} and M. Asplund and E. Antonello and S. Barnes and F. Baudin and K. Belkacem and M. Bergemann and G. Bihain and Birch, {A. C.} and X. Bonfils and I. Boisse and Bonomo, {A. S.} and F. Borsa and Brand{\~a}o, {I. M.} and E. Brocato and S. Brun and M. Burleigh and R. Burston and J. Cabrera and S. Cassisi and W. Chaplin and S. Charpinet and C. Chiappini and Church, {R. P.} and Sz Csizmadia and M. Cunha and M. Damasso and Davies, {M. B.} and Deeg, {H. J.} and D{\'i}az, {R. F.} and S. Dreizler and C. Dreyer and P. Eggenberger and D. Ehrenreich and P. Eigm{\"u}ller and A. Erikson and R. Farmer and S. Feltzing and {de Oliveira Fialho}, F. and P. Figueira and T. Forveille and M. Fridlund and Garc{\'i}a, {R. A.} and P. Giommi and G. Giuffrida and M. Godolt and {da Silva}, {J. Gomes} and T. Granzer and Grenfell, {J. L.} and A. Grotsch-Noels and E. G{\"u}nther and Haswell, {C. A.} and Hatzes, {A. P.} and G. H{\'e}brard and S. Hekker and R. Helled and K. Heng and Jenkins, {J. M.} and A. Johansen and Khodachenko, {M. L.} and Kislyakova, {K. G.} and W. Kley and U. Kolb and N. Krivova and F. Kupka and H. Lammer and Lanza, {A. F.} and Y. Lebreton and D. Magrin and P. Marcos-Arenal and Marrese, {P. M.} and Marques, {J. P.} and J. Martins and S. Mathis and S. Mathur and S. Messina and A. Miglio and J. Montalban and M. Montalto and {P. F. G. Monteiro}, {M. J.} and H. Moradi and E. Moravveji and C. Mordasini and T. Morel and A. Mortier and V. Nascimbeni and Nelson, {R. P.} and Nielsen, {Martin Bo} and L. Noack and Norton, {A. J.} and A. Ofir and M. Oshagh and Ouazzani, {R. M.} and P. P{\'a}pics and Parro, {V. C.} and P. Petit and B. Plez and E. Poretti and A. Quirrenbach and R. Ragazzoni and G. Raimondo and M. Rainer and Reese, {D. R.} and R. Redmer and S. Reffert and B. Rojas-Ayala and Roxburgh, {I. W.} and S. Salmon and A. Santerne and J. Schneider and J. Schou and S. Schuh and H. Schunker and A. Silva-Valio and R. Silvotti and I. Skillen and I. Snellen and F. Sohl and Sousa, {S. G.} and A. Sozzetti and D. Stello and Strassmeier, {K. G.} and M. Švanda and Szab{\'o}, {Gy M.} and A. Tkachenko and D. Valencia and {Van Grootel}, V. and Vauclair, {S. D.} and P. Ventura and Wagner, {F. W.} and Walton, {N. A.} and J. Weingrill and Werner, {S. C.} and Wheatley, {P. J.} and K. Zwintz",
year = "2014",
month = "1",
day = "1",
doi = "10.1007/s10686-014-9383-4",
language = "English (US)",
volume = "38",
pages = "249--330",
journal = "Experimental Astronomy",
issn = "0922-6435",
publisher = "Springer Netherlands",
number = "1-2",

}

TY - JOUR

T1 - The PLATO 2.0 mission

AU - Rauer, H.

AU - Catala, C.

AU - Aerts, C.

AU - Appourchaux, T.

AU - Benz, W.

AU - Brandeker, A.

AU - Christensen-Dalsgaard, J.

AU - Deleuil, M.

AU - Gizon, Laurent

AU - Goupil, M. J.

AU - Güdel, M.

AU - Janot-Pacheco, E.

AU - Mas-Hesse, M.

AU - Pagano, I.

AU - Piotto, G.

AU - Pollacco, D.

AU - Santos,

AU - Smith, A.

AU - Suárez, J. C.

AU - Szabó, R.

AU - Udry, S.

AU - Adibekyan, V.

AU - Alibert, Y.

AU - Almenara, J. M.

AU - Amaro-Seoane, P.

AU - Eiff, M. A.V.

AU - Asplund, M.

AU - Antonello, E.

AU - Barnes, S.

AU - Baudin, F.

AU - Belkacem, K.

AU - Bergemann, M.

AU - Bihain, G.

AU - Birch, A. C.

AU - Bonfils, X.

AU - Boisse, I.

AU - Bonomo, A. S.

AU - Borsa, F.

AU - Brandão, I. M.

AU - Brocato, E.

AU - Brun, S.

AU - Burleigh, M.

AU - Burston, R.

AU - Cabrera, J.

AU - Cassisi, S.

AU - Chaplin, W.

AU - Charpinet, S.

AU - Chiappini, C.

AU - Church, R. P.

AU - Csizmadia, Sz

AU - Cunha, M.

AU - Damasso, M.

AU - Davies, M. B.

AU - Deeg, H. J.

AU - Díaz, R. F.

AU - Dreizler, S.

AU - Dreyer, C.

AU - Eggenberger, P.

AU - Ehrenreich, D.

AU - Eigmüller, P.

AU - Erikson, A.

AU - Farmer, R.

AU - Feltzing, S.

AU - de Oliveira Fialho, F.

AU - Figueira, P.

AU - Forveille, T.

AU - Fridlund, M.

AU - García, R. A.

AU - Giommi, P.

AU - Giuffrida, G.

AU - Godolt, M.

AU - da Silva, J. Gomes

AU - Granzer, T.

AU - Grenfell, J. L.

AU - Grotsch-Noels, A.

AU - Günther, E.

AU - Haswell, C. A.

AU - Hatzes, A. P.

AU - Hébrard, G.

AU - Hekker, S.

AU - Helled, R.

AU - Heng, K.

AU - Jenkins, J. M.

AU - Johansen, A.

AU - Khodachenko, M. L.

AU - Kislyakova, K. G.

AU - Kley, W.

AU - Kolb, U.

AU - Krivova, N.

AU - Kupka, F.

AU - Lammer, H.

AU - Lanza, A. F.

AU - Lebreton, Y.

AU - Magrin, D.

AU - Marcos-Arenal, P.

AU - Marrese, P. M.

AU - Marques, J. P.

AU - Martins, J.

AU - Mathis, S.

AU - Mathur, S.

AU - Messina, S.

AU - Miglio, A.

AU - Montalban, J.

AU - Montalto, M.

AU - P. F. G. Monteiro, M. J.

AU - Moradi, H.

AU - Moravveji, E.

AU - Mordasini, C.

AU - Morel, T.

AU - Mortier, A.

AU - Nascimbeni, V.

AU - Nelson, R. P.

AU - Nielsen, Martin Bo

AU - Noack, L.

AU - Norton, A. J.

AU - Ofir, A.

AU - Oshagh, M.

AU - Ouazzani, R. M.

AU - Pápics, P.

AU - Parro, V. C.

AU - Petit, P.

AU - Plez, B.

AU - Poretti, E.

AU - Quirrenbach, A.

AU - Ragazzoni, R.

AU - Raimondo, G.

AU - Rainer, M.

AU - Reese, D. R.

AU - Redmer, R.

AU - Reffert, S.

AU - Rojas-Ayala, B.

AU - Roxburgh, I. W.

AU - Salmon, S.

AU - Santerne, A.

AU - Schneider, J.

AU - Schou, J.

AU - Schuh, S.

AU - Schunker, H.

AU - Silva-Valio, A.

AU - Silvotti, R.

AU - Skillen, I.

AU - Snellen, I.

AU - Sohl, F.

AU - Sousa, S. G.

AU - Sozzetti, A.

AU - Stello, D.

AU - Strassmeier, K. G.

AU - Švanda, M.

AU - Szabó, Gy M.

AU - Tkachenko, A.

AU - Valencia, D.

AU - Van Grootel, V.

AU - Vauclair, S. D.

AU - Ventura, P.

AU - Wagner, F. W.

AU - Walton, N. A.

AU - Weingrill, J.

AU - Werner, S. C.

AU - Wheatley, P. J.

AU - Zwintz, K.

PY - 2014/1/1

Y1 - 2014/1/1

N2 - PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.

AB - PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.

KW - Asteroseismology

KW - Exoplanetary science

KW - Exoplanets

KW - Stellar science

KW - Transit survey

UR - http://www.scopus.com/inward/record.url?scp=84943014904&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84943014904&partnerID=8YFLogxK

U2 - 10.1007/s10686-014-9383-4

DO - 10.1007/s10686-014-9383-4

M3 - Article

AN - SCOPUS:84943014904

VL - 38

SP - 249

EP - 330

JO - Experimental Astronomy

JF - Experimental Astronomy

SN - 0922-6435

IS - 1-2

ER -