The measurement and interpretation of fractal dimensions of the scalar interface in turbulent flows

R. R. Prasad, K. R. Sreenivasan

Research output: Contribution to journalArticle

Abstract

One of the recently established results concerns the fractal-like properties of surfaces such as the turbulent/nonturbulent interface. Although several confirmations have been reported in recent literature, enough discussion does not exist on how various flow features as well as measurement techniques affect the fractal dimension obtained; nor, in one place, is there a full discussion of the physical interpretation of such measurements. This paper serves these two purposes by examining in detail the specific case of the interface of scalar-marked regions (scalar interface) in turbulent shear flows. Dimension measurements have been made in two separate scaling regimes, one of which spans roughly between the integral and Koimogorov scales (the K range), and the other between the Kolmogorov and Batchelor scales (the B range). In the K range, the fractal dimension is 2.36 ± 0.05 to a high degree of reliability. This is also the dimension of the vorticity interface. The dimension in the B range approaches (logarithmically) the value 3 in the limit of infinite Schmidt number, and is 2.7 ± 0.03 when the diffusing scalar in water is sodium fiuorescein (Schmidt number of the order 1000). Among the effects considered are those of (a) the flow Reynolds number, (b) developing regions such as the vicinity of a jet nozzle or a wake generator, (c) the free-stream and other noise effects, (d) the validity of the method of intersections usually invoked to relate the dimension of a fractal object to that of its intersections, (e) the effect of intersections by "slabs" of finite thickness and "lines" of finite width, and (f) the computational algorithm used for fractal dimension measurement, etc. The authors' previous arguments concerning the physical meaning of the fractal dimension of surfaces in turbulent flows are recapitulated and amplified. In so doing, turbulent mixing is examined, and by invoking Reynolds and Schmidt number similarities, the fractal dimensions of scalar interfaces are deduced when the Schmidt number is small, unity, and large.

Original languageEnglish (US)
Pages (from-to)792-807
Number of pages16
JournalPhysics of Fluids A
Volume2
Issue number5
StatePublished - 1990

Fingerprint

Fractal dimension
turbulent flow
Turbulent flow
fractals
scalars
Schmidt number
Fractals
intersections
Shear flow
Vorticity
Reynolds number
Nozzles
jet nozzles
Sodium
turbulent mixing
free flow
Water
shear flow
wakes
vorticity

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes
  • Computational Mechanics
  • Mechanics of Materials
  • Physics and Astronomy(all)
  • Condensed Matter Physics

Cite this

The measurement and interpretation of fractal dimensions of the scalar interface in turbulent flows. / Prasad, R. R.; Sreenivasan, K. R.

In: Physics of Fluids A, Vol. 2, No. 5, 1990, p. 792-807.

Research output: Contribution to journalArticle

@article{075ee5aa48ca4405b00c0a37f18edfe2,
title = "The measurement and interpretation of fractal dimensions of the scalar interface in turbulent flows",
abstract = "One of the recently established results concerns the fractal-like properties of surfaces such as the turbulent/nonturbulent interface. Although several confirmations have been reported in recent literature, enough discussion does not exist on how various flow features as well as measurement techniques affect the fractal dimension obtained; nor, in one place, is there a full discussion of the physical interpretation of such measurements. This paper serves these two purposes by examining in detail the specific case of the interface of scalar-marked regions (scalar interface) in turbulent shear flows. Dimension measurements have been made in two separate scaling regimes, one of which spans roughly between the integral and Koimogorov scales (the K range), and the other between the Kolmogorov and Batchelor scales (the B range). In the K range, the fractal dimension is 2.36 ± 0.05 to a high degree of reliability. This is also the dimension of the vorticity interface. The dimension in the B range approaches (logarithmically) the value 3 in the limit of infinite Schmidt number, and is 2.7 ± 0.03 when the diffusing scalar in water is sodium fiuorescein (Schmidt number of the order 1000). Among the effects considered are those of (a) the flow Reynolds number, (b) developing regions such as the vicinity of a jet nozzle or a wake generator, (c) the free-stream and other noise effects, (d) the validity of the method of intersections usually invoked to relate the dimension of a fractal object to that of its intersections, (e) the effect of intersections by {"}slabs{"} of finite thickness and {"}lines{"} of finite width, and (f) the computational algorithm used for fractal dimension measurement, etc. The authors' previous arguments concerning the physical meaning of the fractal dimension of surfaces in turbulent flows are recapitulated and amplified. In so doing, turbulent mixing is examined, and by invoking Reynolds and Schmidt number similarities, the fractal dimensions of scalar interfaces are deduced when the Schmidt number is small, unity, and large.",
author = "Prasad, {R. R.} and Sreenivasan, {K. R.}",
year = "1990",
language = "English (US)",
volume = "2",
pages = "792--807",
journal = "Physics of fluids. A, Fluid dynamics",
issn = "0899-8213",
publisher = "American Institute of Physics Publising LLC",
number = "5",

}

TY - JOUR

T1 - The measurement and interpretation of fractal dimensions of the scalar interface in turbulent flows

AU - Prasad, R. R.

AU - Sreenivasan, K. R.

PY - 1990

Y1 - 1990

N2 - One of the recently established results concerns the fractal-like properties of surfaces such as the turbulent/nonturbulent interface. Although several confirmations have been reported in recent literature, enough discussion does not exist on how various flow features as well as measurement techniques affect the fractal dimension obtained; nor, in one place, is there a full discussion of the physical interpretation of such measurements. This paper serves these two purposes by examining in detail the specific case of the interface of scalar-marked regions (scalar interface) in turbulent shear flows. Dimension measurements have been made in two separate scaling regimes, one of which spans roughly between the integral and Koimogorov scales (the K range), and the other between the Kolmogorov and Batchelor scales (the B range). In the K range, the fractal dimension is 2.36 ± 0.05 to a high degree of reliability. This is also the dimension of the vorticity interface. The dimension in the B range approaches (logarithmically) the value 3 in the limit of infinite Schmidt number, and is 2.7 ± 0.03 when the diffusing scalar in water is sodium fiuorescein (Schmidt number of the order 1000). Among the effects considered are those of (a) the flow Reynolds number, (b) developing regions such as the vicinity of a jet nozzle or a wake generator, (c) the free-stream and other noise effects, (d) the validity of the method of intersections usually invoked to relate the dimension of a fractal object to that of its intersections, (e) the effect of intersections by "slabs" of finite thickness and "lines" of finite width, and (f) the computational algorithm used for fractal dimension measurement, etc. The authors' previous arguments concerning the physical meaning of the fractal dimension of surfaces in turbulent flows are recapitulated and amplified. In so doing, turbulent mixing is examined, and by invoking Reynolds and Schmidt number similarities, the fractal dimensions of scalar interfaces are deduced when the Schmidt number is small, unity, and large.

AB - One of the recently established results concerns the fractal-like properties of surfaces such as the turbulent/nonturbulent interface. Although several confirmations have been reported in recent literature, enough discussion does not exist on how various flow features as well as measurement techniques affect the fractal dimension obtained; nor, in one place, is there a full discussion of the physical interpretation of such measurements. This paper serves these two purposes by examining in detail the specific case of the interface of scalar-marked regions (scalar interface) in turbulent shear flows. Dimension measurements have been made in two separate scaling regimes, one of which spans roughly between the integral and Koimogorov scales (the K range), and the other between the Kolmogorov and Batchelor scales (the B range). In the K range, the fractal dimension is 2.36 ± 0.05 to a high degree of reliability. This is also the dimension of the vorticity interface. The dimension in the B range approaches (logarithmically) the value 3 in the limit of infinite Schmidt number, and is 2.7 ± 0.03 when the diffusing scalar in water is sodium fiuorescein (Schmidt number of the order 1000). Among the effects considered are those of (a) the flow Reynolds number, (b) developing regions such as the vicinity of a jet nozzle or a wake generator, (c) the free-stream and other noise effects, (d) the validity of the method of intersections usually invoked to relate the dimension of a fractal object to that of its intersections, (e) the effect of intersections by "slabs" of finite thickness and "lines" of finite width, and (f) the computational algorithm used for fractal dimension measurement, etc. The authors' previous arguments concerning the physical meaning of the fractal dimension of surfaces in turbulent flows are recapitulated and amplified. In so doing, turbulent mixing is examined, and by invoking Reynolds and Schmidt number similarities, the fractal dimensions of scalar interfaces are deduced when the Schmidt number is small, unity, and large.

UR - http://www.scopus.com/inward/record.url?scp=0001747171&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001747171&partnerID=8YFLogxK

M3 - Article

VL - 2

SP - 792

EP - 807

JO - Physics of fluids. A, Fluid dynamics

JF - Physics of fluids. A, Fluid dynamics

SN - 0899-8213

IS - 5

ER -