The long-time motion of vortex sheets with surface tension

T. Y. Hou, J. S. Lowengrub, Michael Shelley

Research output: Contribution to journalArticle

Abstract

We study numerically the simplest model of two incompressible, immiscible fluids shearing past one another. The fluids are two-dimensional, inviscid, irrotational, density matched, and separated by a sharp interface under a surface tension. The nonlinear growth and evolution of this interface is governed by only the competing effects of the Kelvin-Helmholtz instability and the dispersion due to surface tension. We have developed new and highly accurate numerical methods designed to treat the difficulties associated with the presence of surface tension. This allows us to accurately simulate the evolution of the interface over much longer times than has been done previously. A surprisingly rich variety of behavior is found. For small Weber numbers, where there are no unstable length-scales, the flow is dispersively dominated and oscillatory behavior is observed. For intermediate Weber numbers, where there are only a few unstable length-scales, the interface forms elongating and interpenetrating fingers of fluid. At larger Weber numbers, where there are many unstable scales, the interface rolls-up into a "Kelvin-Helmholtz" spiral with its late evolution terminated by the collision of the interface with itself, forming at that instant bubbles of fluid at the core of the spiral. Using locally refined grids, this singular event (a "topological" or "pinching" singularity) is studied carefully. Our computations suggest at least a partial conformance to a local self-similar scaling. For fixed initial data, the pinching singularity times decrease as the surface tension is reduced, apparently towards the singularity time associated with the zero surface tension problem, as studied by Moore and others. Simulations from more complicated, multi-modal initial data show the evolution as a combination of these fingers, spirals, and pinches.

Original languageEnglish (US)
Pages (from-to)1933-1954
Number of pages22
JournalPhysics of Fluids
Volume9
Issue number7
StatePublished - Jul 1997

Fingerprint

vortex sheets
Surface tension
interfacial tension
Vortex flow
Fluids
fluids
Kelvin-Helmholtz instability
Shearing
incompressible fluids
Numerical methods
shearing
bubbles
grids
scaling
collisions

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes
  • Computational Mechanics
  • Mechanics of Materials
  • Physics and Astronomy(all)
  • Condensed Matter Physics

Cite this

Hou, T. Y., Lowengrub, J. S., & Shelley, M. (1997). The long-time motion of vortex sheets with surface tension. Physics of Fluids, 9(7), 1933-1954.

The long-time motion of vortex sheets with surface tension. / Hou, T. Y.; Lowengrub, J. S.; Shelley, Michael.

In: Physics of Fluids, Vol. 9, No. 7, 07.1997, p. 1933-1954.

Research output: Contribution to journalArticle

Hou, TY, Lowengrub, JS & Shelley, M 1997, 'The long-time motion of vortex sheets with surface tension', Physics of Fluids, vol. 9, no. 7, pp. 1933-1954.
Hou TY, Lowengrub JS, Shelley M. The long-time motion of vortex sheets with surface tension. Physics of Fluids. 1997 Jul;9(7):1933-1954.
Hou, T. Y. ; Lowengrub, J. S. ; Shelley, Michael. / The long-time motion of vortex sheets with surface tension. In: Physics of Fluids. 1997 ; Vol. 9, No. 7. pp. 1933-1954.
@article{4d3840d7a03b40ffa5ae29322e8610f0,
title = "The long-time motion of vortex sheets with surface tension",
abstract = "We study numerically the simplest model of two incompressible, immiscible fluids shearing past one another. The fluids are two-dimensional, inviscid, irrotational, density matched, and separated by a sharp interface under a surface tension. The nonlinear growth and evolution of this interface is governed by only the competing effects of the Kelvin-Helmholtz instability and the dispersion due to surface tension. We have developed new and highly accurate numerical methods designed to treat the difficulties associated with the presence of surface tension. This allows us to accurately simulate the evolution of the interface over much longer times than has been done previously. A surprisingly rich variety of behavior is found. For small Weber numbers, where there are no unstable length-scales, the flow is dispersively dominated and oscillatory behavior is observed. For intermediate Weber numbers, where there are only a few unstable length-scales, the interface forms elongating and interpenetrating fingers of fluid. At larger Weber numbers, where there are many unstable scales, the interface rolls-up into a {"}Kelvin-Helmholtz{"} spiral with its late evolution terminated by the collision of the interface with itself, forming at that instant bubbles of fluid at the core of the spiral. Using locally refined grids, this singular event (a {"}topological{"} or {"}pinching{"} singularity) is studied carefully. Our computations suggest at least a partial conformance to a local self-similar scaling. For fixed initial data, the pinching singularity times decrease as the surface tension is reduced, apparently towards the singularity time associated with the zero surface tension problem, as studied by Moore and others. Simulations from more complicated, multi-modal initial data show the evolution as a combination of these fingers, spirals, and pinches.",
author = "Hou, {T. Y.} and Lowengrub, {J. S.} and Michael Shelley",
year = "1997",
month = "7",
language = "English (US)",
volume = "9",
pages = "1933--1954",
journal = "Physics of Fluids",
issn = "1070-6631",
publisher = "American Institute of Physics Publising LLC",
number = "7",

}

TY - JOUR

T1 - The long-time motion of vortex sheets with surface tension

AU - Hou, T. Y.

AU - Lowengrub, J. S.

AU - Shelley, Michael

PY - 1997/7

Y1 - 1997/7

N2 - We study numerically the simplest model of two incompressible, immiscible fluids shearing past one another. The fluids are two-dimensional, inviscid, irrotational, density matched, and separated by a sharp interface under a surface tension. The nonlinear growth and evolution of this interface is governed by only the competing effects of the Kelvin-Helmholtz instability and the dispersion due to surface tension. We have developed new and highly accurate numerical methods designed to treat the difficulties associated with the presence of surface tension. This allows us to accurately simulate the evolution of the interface over much longer times than has been done previously. A surprisingly rich variety of behavior is found. For small Weber numbers, where there are no unstable length-scales, the flow is dispersively dominated and oscillatory behavior is observed. For intermediate Weber numbers, where there are only a few unstable length-scales, the interface forms elongating and interpenetrating fingers of fluid. At larger Weber numbers, where there are many unstable scales, the interface rolls-up into a "Kelvin-Helmholtz" spiral with its late evolution terminated by the collision of the interface with itself, forming at that instant bubbles of fluid at the core of the spiral. Using locally refined grids, this singular event (a "topological" or "pinching" singularity) is studied carefully. Our computations suggest at least a partial conformance to a local self-similar scaling. For fixed initial data, the pinching singularity times decrease as the surface tension is reduced, apparently towards the singularity time associated with the zero surface tension problem, as studied by Moore and others. Simulations from more complicated, multi-modal initial data show the evolution as a combination of these fingers, spirals, and pinches.

AB - We study numerically the simplest model of two incompressible, immiscible fluids shearing past one another. The fluids are two-dimensional, inviscid, irrotational, density matched, and separated by a sharp interface under a surface tension. The nonlinear growth and evolution of this interface is governed by only the competing effects of the Kelvin-Helmholtz instability and the dispersion due to surface tension. We have developed new and highly accurate numerical methods designed to treat the difficulties associated with the presence of surface tension. This allows us to accurately simulate the evolution of the interface over much longer times than has been done previously. A surprisingly rich variety of behavior is found. For small Weber numbers, where there are no unstable length-scales, the flow is dispersively dominated and oscillatory behavior is observed. For intermediate Weber numbers, where there are only a few unstable length-scales, the interface forms elongating and interpenetrating fingers of fluid. At larger Weber numbers, where there are many unstable scales, the interface rolls-up into a "Kelvin-Helmholtz" spiral with its late evolution terminated by the collision of the interface with itself, forming at that instant bubbles of fluid at the core of the spiral. Using locally refined grids, this singular event (a "topological" or "pinching" singularity) is studied carefully. Our computations suggest at least a partial conformance to a local self-similar scaling. For fixed initial data, the pinching singularity times decrease as the surface tension is reduced, apparently towards the singularity time associated with the zero surface tension problem, as studied by Moore and others. Simulations from more complicated, multi-modal initial data show the evolution as a combination of these fingers, spirals, and pinches.

UR - http://www.scopus.com/inward/record.url?scp=0030870172&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030870172&partnerID=8YFLogxK

M3 - Article

VL - 9

SP - 1933

EP - 1954

JO - Physics of Fluids

JF - Physics of Fluids

SN - 1070-6631

IS - 7

ER -