The furthest-site geodesic voronoi diagram

Boris Aronov, Steven Fortune, Gordon Wilfong

    Research output: Contribution to journalArticle

    Abstract

    We present an O((n+k) log(n+k))-time, O(n+k)-space algorithm for computing the furthest-site Voronoi diagram of k point sites with respect to the geodesic metric within a simple n-sided polygon.

    Original languageEnglish (US)
    Pages (from-to)217-255
    Number of pages39
    JournalDiscrete and Computational Geometry
    Volume9
    Issue number1
    DOIs
    StatePublished - Dec 1993

    Fingerprint

    K-space
    Voronoi Diagram
    Polygon
    Geodesic
    Metric
    Computing

    ASJC Scopus subject areas

    • Theoretical Computer Science
    • Geometry and Topology
    • Discrete Mathematics and Combinatorics
    • Computational Theory and Mathematics

    Cite this

    The furthest-site geodesic voronoi diagram. / Aronov, Boris; Fortune, Steven; Wilfong, Gordon.

    In: Discrete and Computational Geometry, Vol. 9, No. 1, 12.1993, p. 217-255.

    Research output: Contribution to journalArticle

    Aronov, B, Fortune, S & Wilfong, G 1993, 'The furthest-site geodesic voronoi diagram', Discrete and Computational Geometry, vol. 9, no. 1, pp. 217-255. https://doi.org/10.1007/BF02189321
    Aronov, Boris ; Fortune, Steven ; Wilfong, Gordon. / The furthest-site geodesic voronoi diagram. In: Discrete and Computational Geometry. 1993 ; Vol. 9, No. 1. pp. 217-255.
    @article{1bfe83aa50104a61ac416fba4be54a9b,
    title = "The furthest-site geodesic voronoi diagram",
    abstract = "We present an O((n+k) log(n+k))-time, O(n+k)-space algorithm for computing the furthest-site Voronoi diagram of k point sites with respect to the geodesic metric within a simple n-sided polygon.",
    author = "Boris Aronov and Steven Fortune and Gordon Wilfong",
    year = "1993",
    month = "12",
    doi = "10.1007/BF02189321",
    language = "English (US)",
    volume = "9",
    pages = "217--255",
    journal = "Discrete and Computational Geometry",
    issn = "0179-5376",
    publisher = "Springer New York",
    number = "1",

    }

    TY - JOUR

    T1 - The furthest-site geodesic voronoi diagram

    AU - Aronov, Boris

    AU - Fortune, Steven

    AU - Wilfong, Gordon

    PY - 1993/12

    Y1 - 1993/12

    N2 - We present an O((n+k) log(n+k))-time, O(n+k)-space algorithm for computing the furthest-site Voronoi diagram of k point sites with respect to the geodesic metric within a simple n-sided polygon.

    AB - We present an O((n+k) log(n+k))-time, O(n+k)-space algorithm for computing the furthest-site Voronoi diagram of k point sites with respect to the geodesic metric within a simple n-sided polygon.

    UR - http://www.scopus.com/inward/record.url?scp=21144464584&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=21144464584&partnerID=8YFLogxK

    U2 - 10.1007/BF02189321

    DO - 10.1007/BF02189321

    M3 - Article

    VL - 9

    SP - 217

    EP - 255

    JO - Discrete and Computational Geometry

    JF - Discrete and Computational Geometry

    SN - 0179-5376

    IS - 1

    ER -