Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools

N. Azimihashemi, K. Erbguth, A. Vogt, T. Riemensperger, E. Rauch, D. Woodmansee, J. Nagpal, M. Brauner, M. Sheves, A. Fiala, L. Kattner, Dirk Trauner, P. Hegemann, A. Gottschalk, J. F. Liewald

Research output: Contribution to journalArticle

Abstract

Optogenetic tools have become indispensable in neuroscience to stimulate or inhibit excitable cells by light. Channelrhodopsin-2 (ChR2) variants have been established by mutating the opsin backbone or by mining related algal genomes. As an alternative strategy, we surveyed synthetic retinal analogues combined with microbial rhodopsins for functional and spectral properties, capitalizing on assays in C. elegans, HEK cells and larval Drosophila. Compared with all-trans retinal (ATR), Dimethylamino-retinal (DMAR) shifts the action spectra maxima of ChR2 variants H134R and H134R/T159C from 480 to 520 nm. Moreover, DMAR decelerates the photocycle of ChR2(H134R) and (H134R/T159C), thereby reducing the light intensity required for persistent channel activation. In hyperpolarizing archaerhodopsin-3 and Mac, naphthyl-retinal and thiophene-retinal support activity alike ATR, yet at altered peak wavelengths. Our experiments enable applications of retinal analogues in colour tuning and altering photocycle characteristics of optogenetic tools, thereby increasing the operational light sensitivity of existing cell lines or transgenic animals.

Original languageEnglish (US)
Article number5810
JournalNature Communications
Volume5
DOIs
StatePublished - 2014

Fingerprint

Microbial Rhodopsins
Optogenetics
analogs
neurology
Opsins
Drosophila
Light
Thiophenes
Photophobia
Genetically Modified Animals
Kinetics
Photosensitivity
genome
kinetics
Neurosciences
thiophenes
cells
cultured cells
luminous intensity
animals

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Cite this

Azimihashemi, N., Erbguth, K., Vogt, A., Riemensperger, T., Rauch, E., Woodmansee, D., ... Liewald, J. F. (2014). Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools. Nature Communications, 5, [5810]. https://doi.org/10.1038/ncomms6810

Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools. / Azimihashemi, N.; Erbguth, K.; Vogt, A.; Riemensperger, T.; Rauch, E.; Woodmansee, D.; Nagpal, J.; Brauner, M.; Sheves, M.; Fiala, A.; Kattner, L.; Trauner, Dirk; Hegemann, P.; Gottschalk, A.; Liewald, J. F.

In: Nature Communications, Vol. 5, 5810, 2014.

Research output: Contribution to journalArticle

Azimihashemi, N, Erbguth, K, Vogt, A, Riemensperger, T, Rauch, E, Woodmansee, D, Nagpal, J, Brauner, M, Sheves, M, Fiala, A, Kattner, L, Trauner, D, Hegemann, P, Gottschalk, A & Liewald, JF 2014, 'Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools', Nature Communications, vol. 5, 5810. https://doi.org/10.1038/ncomms6810
Azimihashemi, N. ; Erbguth, K. ; Vogt, A. ; Riemensperger, T. ; Rauch, E. ; Woodmansee, D. ; Nagpal, J. ; Brauner, M. ; Sheves, M. ; Fiala, A. ; Kattner, L. ; Trauner, Dirk ; Hegemann, P. ; Gottschalk, A. ; Liewald, J. F. / Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools. In: Nature Communications. 2014 ; Vol. 5.
@article{0072760f8bec45e0a01b8bc82af25b57,
title = "Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools",
abstract = "Optogenetic tools have become indispensable in neuroscience to stimulate or inhibit excitable cells by light. Channelrhodopsin-2 (ChR2) variants have been established by mutating the opsin backbone or by mining related algal genomes. As an alternative strategy, we surveyed synthetic retinal analogues combined with microbial rhodopsins for functional and spectral properties, capitalizing on assays in C. elegans, HEK cells and larval Drosophila. Compared with all-trans retinal (ATR), Dimethylamino-retinal (DMAR) shifts the action spectra maxima of ChR2 variants H134R and H134R/T159C from 480 to 520 nm. Moreover, DMAR decelerates the photocycle of ChR2(H134R) and (H134R/T159C), thereby reducing the light intensity required for persistent channel activation. In hyperpolarizing archaerhodopsin-3 and Mac, naphthyl-retinal and thiophene-retinal support activity alike ATR, yet at altered peak wavelengths. Our experiments enable applications of retinal analogues in colour tuning and altering photocycle characteristics of optogenetic tools, thereby increasing the operational light sensitivity of existing cell lines or transgenic animals.",
author = "N. Azimihashemi and K. Erbguth and A. Vogt and T. Riemensperger and E. Rauch and D. Woodmansee and J. Nagpal and M. Brauner and M. Sheves and A. Fiala and L. Kattner and Dirk Trauner and P. Hegemann and A. Gottschalk and Liewald, {J. F.}",
year = "2014",
doi = "10.1038/ncomms6810",
language = "English (US)",
volume = "5",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",

}

TY - JOUR

T1 - Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools

AU - Azimihashemi, N.

AU - Erbguth, K.

AU - Vogt, A.

AU - Riemensperger, T.

AU - Rauch, E.

AU - Woodmansee, D.

AU - Nagpal, J.

AU - Brauner, M.

AU - Sheves, M.

AU - Fiala, A.

AU - Kattner, L.

AU - Trauner, Dirk

AU - Hegemann, P.

AU - Gottschalk, A.

AU - Liewald, J. F.

PY - 2014

Y1 - 2014

N2 - Optogenetic tools have become indispensable in neuroscience to stimulate or inhibit excitable cells by light. Channelrhodopsin-2 (ChR2) variants have been established by mutating the opsin backbone or by mining related algal genomes. As an alternative strategy, we surveyed synthetic retinal analogues combined with microbial rhodopsins for functional and spectral properties, capitalizing on assays in C. elegans, HEK cells and larval Drosophila. Compared with all-trans retinal (ATR), Dimethylamino-retinal (DMAR) shifts the action spectra maxima of ChR2 variants H134R and H134R/T159C from 480 to 520 nm. Moreover, DMAR decelerates the photocycle of ChR2(H134R) and (H134R/T159C), thereby reducing the light intensity required for persistent channel activation. In hyperpolarizing archaerhodopsin-3 and Mac, naphthyl-retinal and thiophene-retinal support activity alike ATR, yet at altered peak wavelengths. Our experiments enable applications of retinal analogues in colour tuning and altering photocycle characteristics of optogenetic tools, thereby increasing the operational light sensitivity of existing cell lines or transgenic animals.

AB - Optogenetic tools have become indispensable in neuroscience to stimulate or inhibit excitable cells by light. Channelrhodopsin-2 (ChR2) variants have been established by mutating the opsin backbone or by mining related algal genomes. As an alternative strategy, we surveyed synthetic retinal analogues combined with microbial rhodopsins for functional and spectral properties, capitalizing on assays in C. elegans, HEK cells and larval Drosophila. Compared with all-trans retinal (ATR), Dimethylamino-retinal (DMAR) shifts the action spectra maxima of ChR2 variants H134R and H134R/T159C from 480 to 520 nm. Moreover, DMAR decelerates the photocycle of ChR2(H134R) and (H134R/T159C), thereby reducing the light intensity required for persistent channel activation. In hyperpolarizing archaerhodopsin-3 and Mac, naphthyl-retinal and thiophene-retinal support activity alike ATR, yet at altered peak wavelengths. Our experiments enable applications of retinal analogues in colour tuning and altering photocycle characteristics of optogenetic tools, thereby increasing the operational light sensitivity of existing cell lines or transgenic animals.

UR - http://www.scopus.com/inward/record.url?scp=84923335087&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84923335087&partnerID=8YFLogxK

U2 - 10.1038/ncomms6810

DO - 10.1038/ncomms6810

M3 - Article

C2 - 25503804

AN - SCOPUS:84923335087

VL - 5

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

M1 - 5810

ER -