Sputter deposition of semi-crystalline tin dioxide films for CIGS solar cells

B. Selin Tosun, Rebekah K. Feist, Stephen A. Campbell, Eray Aydil, Aloysius Gunawan, K. Andre Mkhoyan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Tin dioxide (SnO 2) is emerging as an important material for use in copper indium gallium diselenide (CIGS) based solar cells. Amorphous SnO 2 may be used as a glass overlayer for the entire device and protecting it against water permeation. SnO 2 is also a viable semiconductor candidate to replace the wide band gap zinc oxide (ZnO) window layer to improve long-term device reliability. The film properties required by these two applications are different. Amorphous films have superior water permeation resistance while polycrystalline films generally have better charge carrier transport properties. Thus, it is important to understand how to tune the structure of SnO 2 films between amorphous and polycrystalline. Using X-ray diffraction and Hall-effect measurements, we have studied the structure and electrical properties of SnO 2 films deposited by radio frequency (RF) magnetron sputtering as a function of deposition temperature, sputtering power, feed gas composition and film thickness. Films deposited at room temperature and thinner than 200 nm tend to be amorphous. Film crystallinity increases with film thickness and deposition temperature but is not affected significantly by sputtering power. Films with resistivities ranging between 20 mΩ cm to 800 mΩ cm are deposited. The films are n-type with carrier concentrations in the 310 18 cm -3 to 310 20 cm -3 range. Carrier concentration decreases with oxygen concentration in the feed gas. Electron mobilities range from 1 to 10 cm 2/V s and increase with increasing film thickness, oxygen addition to the feed gas and film crystallinity. Electron mobilities in the 1-3 cm 2/V s range are obtained even in amorphous films. When we apply these differently deposited SnO 2 layers for the CIGS solar cell damp-heat performance studies. Approximately 0.2 micron and thicker amorphous tin dioxide layers deposited on top of the completed CIGS solar cells can significantly increase the device lifetime by forming a barrier against water diffusion. The SnO 2 overlayer protect the ∼ 93 % of the initial solar cell efficiency even after 150 hours of damp-heat treatment (85 °C/85 % RH) when the solar cells without the SnO 2 layer lost nearly 80 % of their initial efficiency within 24 hours of commencing the test. The replacement of water sensitive and water permeable ZnO window layer of CIGS solar cells is provided with an amorphous or polymorphous (mixture of amorphous and polycrystalline material) tin dioxide layer. Using identical CIGS layer and fabrication, solar cells made with ZnO or SnO 2 window layers give similar overall power conversion efficiencies. We demonstrate an 8.3 % efficient CIGS solar cell with a SnO 2 window layer. Same solar cell fabrication process and CIGS film with ZnO window layer resulted in 8.7 % overall power conversion efficiency. The open circuit voltages of the two cells were the same indicating that the band alignment with the SnO 2 film is suitable for CIGS.

Original languageEnglish (US)
Title of host publication11AIChE - 2011 AIChE Annual Meeting, Conference Proceedings
StatePublished - Dec 1 2011
Event2011 AIChE Annual Meeting, 11AIChE - Minneapolis, MN, United States
Duration: Oct 16 2011Oct 21 2011

Other

Other2011 AIChE Annual Meeting, 11AIChE
CountryUnited States
CityMinneapolis, MN
Period10/16/1110/21/11

Fingerprint

Tin dioxide
Sputter deposition
Gallium
Indium
Copper
Solar cells
Crystalline materials
Zinc Oxide
Zinc oxide
Amorphous films
Water
Film thickness
Electron mobility
Gases
Permeation
Conversion efficiency
Carrier concentration
Sputtering
stannic oxide
Oxygen

ASJC Scopus subject areas

  • Chemical Engineering(all)

Cite this

Tosun, B. S., Feist, R. K., Campbell, S. A., Aydil, E., Gunawan, A., & Mkhoyan, K. A. (2011). Sputter deposition of semi-crystalline tin dioxide films for CIGS solar cells. In 11AIChE - 2011 AIChE Annual Meeting, Conference Proceedings

Sputter deposition of semi-crystalline tin dioxide films for CIGS solar cells. / Tosun, B. Selin; Feist, Rebekah K.; Campbell, Stephen A.; Aydil, Eray; Gunawan, Aloysius; Mkhoyan, K. Andre.

11AIChE - 2011 AIChE Annual Meeting, Conference Proceedings. 2011.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Tosun, BS, Feist, RK, Campbell, SA, Aydil, E, Gunawan, A & Mkhoyan, KA 2011, Sputter deposition of semi-crystalline tin dioxide films for CIGS solar cells. in 11AIChE - 2011 AIChE Annual Meeting, Conference Proceedings. 2011 AIChE Annual Meeting, 11AIChE, Minneapolis, MN, United States, 10/16/11.
Tosun BS, Feist RK, Campbell SA, Aydil E, Gunawan A, Mkhoyan KA. Sputter deposition of semi-crystalline tin dioxide films for CIGS solar cells. In 11AIChE - 2011 AIChE Annual Meeting, Conference Proceedings. 2011
Tosun, B. Selin ; Feist, Rebekah K. ; Campbell, Stephen A. ; Aydil, Eray ; Gunawan, Aloysius ; Mkhoyan, K. Andre. / Sputter deposition of semi-crystalline tin dioxide films for CIGS solar cells. 11AIChE - 2011 AIChE Annual Meeting, Conference Proceedings. 2011.
@inproceedings{7007963695d04aebb7162ed4cc1fb96e,
title = "Sputter deposition of semi-crystalline tin dioxide films for CIGS solar cells",
abstract = "Tin dioxide (SnO 2) is emerging as an important material for use in copper indium gallium diselenide (CIGS) based solar cells. Amorphous SnO 2 may be used as a glass overlayer for the entire device and protecting it against water permeation. SnO 2 is also a viable semiconductor candidate to replace the wide band gap zinc oxide (ZnO) window layer to improve long-term device reliability. The film properties required by these two applications are different. Amorphous films have superior water permeation resistance while polycrystalline films generally have better charge carrier transport properties. Thus, it is important to understand how to tune the structure of SnO 2 films between amorphous and polycrystalline. Using X-ray diffraction and Hall-effect measurements, we have studied the structure and electrical properties of SnO 2 films deposited by radio frequency (RF) magnetron sputtering as a function of deposition temperature, sputtering power, feed gas composition and film thickness. Films deposited at room temperature and thinner than 200 nm tend to be amorphous. Film crystallinity increases with film thickness and deposition temperature but is not affected significantly by sputtering power. Films with resistivities ranging between 20 mΩ cm to 800 mΩ cm are deposited. The films are n-type with carrier concentrations in the 310 18 cm -3 to 310 20 cm -3 range. Carrier concentration decreases with oxygen concentration in the feed gas. Electron mobilities range from 1 to 10 cm 2/V s and increase with increasing film thickness, oxygen addition to the feed gas and film crystallinity. Electron mobilities in the 1-3 cm 2/V s range are obtained even in amorphous films. When we apply these differently deposited SnO 2 layers for the CIGS solar cell damp-heat performance studies. Approximately 0.2 micron and thicker amorphous tin dioxide layers deposited on top of the completed CIGS solar cells can significantly increase the device lifetime by forming a barrier against water diffusion. The SnO 2 overlayer protect the ∼ 93 {\%} of the initial solar cell efficiency even after 150 hours of damp-heat treatment (85 °C/85 {\%} RH) when the solar cells without the SnO 2 layer lost nearly 80 {\%} of their initial efficiency within 24 hours of commencing the test. The replacement of water sensitive and water permeable ZnO window layer of CIGS solar cells is provided with an amorphous or polymorphous (mixture of amorphous and polycrystalline material) tin dioxide layer. Using identical CIGS layer and fabrication, solar cells made with ZnO or SnO 2 window layers give similar overall power conversion efficiencies. We demonstrate an 8.3 {\%} efficient CIGS solar cell with a SnO 2 window layer. Same solar cell fabrication process and CIGS film with ZnO window layer resulted in 8.7 {\%} overall power conversion efficiency. The open circuit voltages of the two cells were the same indicating that the band alignment with the SnO 2 film is suitable for CIGS.",
author = "Tosun, {B. Selin} and Feist, {Rebekah K.} and Campbell, {Stephen A.} and Eray Aydil and Aloysius Gunawan and Mkhoyan, {K. Andre}",
year = "2011",
month = "12",
day = "1",
language = "English (US)",
isbn = "9780816910700",
booktitle = "11AIChE - 2011 AIChE Annual Meeting, Conference Proceedings",

}

TY - GEN

T1 - Sputter deposition of semi-crystalline tin dioxide films for CIGS solar cells

AU - Tosun, B. Selin

AU - Feist, Rebekah K.

AU - Campbell, Stephen A.

AU - Aydil, Eray

AU - Gunawan, Aloysius

AU - Mkhoyan, K. Andre

PY - 2011/12/1

Y1 - 2011/12/1

N2 - Tin dioxide (SnO 2) is emerging as an important material for use in copper indium gallium diselenide (CIGS) based solar cells. Amorphous SnO 2 may be used as a glass overlayer for the entire device and protecting it against water permeation. SnO 2 is also a viable semiconductor candidate to replace the wide band gap zinc oxide (ZnO) window layer to improve long-term device reliability. The film properties required by these two applications are different. Amorphous films have superior water permeation resistance while polycrystalline films generally have better charge carrier transport properties. Thus, it is important to understand how to tune the structure of SnO 2 films between amorphous and polycrystalline. Using X-ray diffraction and Hall-effect measurements, we have studied the structure and electrical properties of SnO 2 films deposited by radio frequency (RF) magnetron sputtering as a function of deposition temperature, sputtering power, feed gas composition and film thickness. Films deposited at room temperature and thinner than 200 nm tend to be amorphous. Film crystallinity increases with film thickness and deposition temperature but is not affected significantly by sputtering power. Films with resistivities ranging between 20 mΩ cm to 800 mΩ cm are deposited. The films are n-type with carrier concentrations in the 310 18 cm -3 to 310 20 cm -3 range. Carrier concentration decreases with oxygen concentration in the feed gas. Electron mobilities range from 1 to 10 cm 2/V s and increase with increasing film thickness, oxygen addition to the feed gas and film crystallinity. Electron mobilities in the 1-3 cm 2/V s range are obtained even in amorphous films. When we apply these differently deposited SnO 2 layers for the CIGS solar cell damp-heat performance studies. Approximately 0.2 micron and thicker amorphous tin dioxide layers deposited on top of the completed CIGS solar cells can significantly increase the device lifetime by forming a barrier against water diffusion. The SnO 2 overlayer protect the ∼ 93 % of the initial solar cell efficiency even after 150 hours of damp-heat treatment (85 °C/85 % RH) when the solar cells without the SnO 2 layer lost nearly 80 % of their initial efficiency within 24 hours of commencing the test. The replacement of water sensitive and water permeable ZnO window layer of CIGS solar cells is provided with an amorphous or polymorphous (mixture of amorphous and polycrystalline material) tin dioxide layer. Using identical CIGS layer and fabrication, solar cells made with ZnO or SnO 2 window layers give similar overall power conversion efficiencies. We demonstrate an 8.3 % efficient CIGS solar cell with a SnO 2 window layer. Same solar cell fabrication process and CIGS film with ZnO window layer resulted in 8.7 % overall power conversion efficiency. The open circuit voltages of the two cells were the same indicating that the band alignment with the SnO 2 film is suitable for CIGS.

AB - Tin dioxide (SnO 2) is emerging as an important material for use in copper indium gallium diselenide (CIGS) based solar cells. Amorphous SnO 2 may be used as a glass overlayer for the entire device and protecting it against water permeation. SnO 2 is also a viable semiconductor candidate to replace the wide band gap zinc oxide (ZnO) window layer to improve long-term device reliability. The film properties required by these two applications are different. Amorphous films have superior water permeation resistance while polycrystalline films generally have better charge carrier transport properties. Thus, it is important to understand how to tune the structure of SnO 2 films between amorphous and polycrystalline. Using X-ray diffraction and Hall-effect measurements, we have studied the structure and electrical properties of SnO 2 films deposited by radio frequency (RF) magnetron sputtering as a function of deposition temperature, sputtering power, feed gas composition and film thickness. Films deposited at room temperature and thinner than 200 nm tend to be amorphous. Film crystallinity increases with film thickness and deposition temperature but is not affected significantly by sputtering power. Films with resistivities ranging between 20 mΩ cm to 800 mΩ cm are deposited. The films are n-type with carrier concentrations in the 310 18 cm -3 to 310 20 cm -3 range. Carrier concentration decreases with oxygen concentration in the feed gas. Electron mobilities range from 1 to 10 cm 2/V s and increase with increasing film thickness, oxygen addition to the feed gas and film crystallinity. Electron mobilities in the 1-3 cm 2/V s range are obtained even in amorphous films. When we apply these differently deposited SnO 2 layers for the CIGS solar cell damp-heat performance studies. Approximately 0.2 micron and thicker amorphous tin dioxide layers deposited on top of the completed CIGS solar cells can significantly increase the device lifetime by forming a barrier against water diffusion. The SnO 2 overlayer protect the ∼ 93 % of the initial solar cell efficiency even after 150 hours of damp-heat treatment (85 °C/85 % RH) when the solar cells without the SnO 2 layer lost nearly 80 % of their initial efficiency within 24 hours of commencing the test. The replacement of water sensitive and water permeable ZnO window layer of CIGS solar cells is provided with an amorphous or polymorphous (mixture of amorphous and polycrystalline material) tin dioxide layer. Using identical CIGS layer and fabrication, solar cells made with ZnO or SnO 2 window layers give similar overall power conversion efficiencies. We demonstrate an 8.3 % efficient CIGS solar cell with a SnO 2 window layer. Same solar cell fabrication process and CIGS film with ZnO window layer resulted in 8.7 % overall power conversion efficiency. The open circuit voltages of the two cells were the same indicating that the band alignment with the SnO 2 film is suitable for CIGS.

UR - http://www.scopus.com/inward/record.url?scp=84857227084&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84857227084&partnerID=8YFLogxK

M3 - Conference contribution

SN - 9780816910700

BT - 11AIChE - 2011 AIChE Annual Meeting, Conference Proceedings

ER -