Spacing of cytochrome oxidase blobs in visual cortex of normal and strabismic monkeys

Kathryn M. Murphy, David G. Jones, Suzanne B. Fenstemaker, Victor D. Pegado, Lynne Kiorpes, J. Anthony Movshon

Research output: Contribution to journalArticle

Abstract

Some models of visual cortical development are based on the assumption that the tangential organization of V1 is not determined prior to visual experience. In these models, correlated binocular activity is a key element in the formation of visual cortical columns, and when the degree of interocular correlation is reduced the models predict an increase in column spacing. To examine this prediction we measured the spacing of columns, as defined by cytochrome oxidase (CO) blobs, in the visual cortex of monkeys whose binocular vision was either normal or disrupted by a strabismus. The spatial distribution of blobs was examined in seven normal and five strabismic macaques. Tangential sections through the upper layers of the visual cortex were stained to reveal the two-dimensional (2D) pattern of CO blobs. Each blob was localized and their center-to-center spacing, packing arrangement and density were calculated using 2D nearest-neighbor spatial analyses. The mean center-to-center spacing of blobs (590 μm for normally reared and 598 μm for strabismic macaques) and the mean density of blobs (3.67 blobs/mm2 for normally reared and 3.45 blobs/mm2 for strabismic macaques) were not significantly different. In addition, the 2D packing arrangement of the blobs was not affected by strabismus. While it is clear that neural activity plays a key role in the elaboration and refinement of ocular dominance cortical modules, we conclude that it does not determine the spatial period of the pattern of CO blobs. This suggests that aspects of the neural circuitry underlying the columnar architecture of the visual cortex are established prenatally and its fundamental periodicity is not modifiable by experience.

Original languageEnglish (US)
Pages (from-to)237-244
Number of pages8
JournalCerebral Cortex
Volume8
Issue number3
DOIs
StatePublished - 1998

Fingerprint

Macaca
Electron Transport Complex IV
Visual Cortex
Haplorhini
Strabismus
ocular Dominance
Binocular Vision
Spatial Analysis
Periodicity

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Spacing of cytochrome oxidase blobs in visual cortex of normal and strabismic monkeys. / Murphy, Kathryn M.; Jones, David G.; Fenstemaker, Suzanne B.; Pegado, Victor D.; Kiorpes, Lynne; Anthony Movshon, J.

In: Cerebral Cortex, Vol. 8, No. 3, 1998, p. 237-244.

Research output: Contribution to journalArticle

Murphy, Kathryn M. ; Jones, David G. ; Fenstemaker, Suzanne B. ; Pegado, Victor D. ; Kiorpes, Lynne ; Anthony Movshon, J. / Spacing of cytochrome oxidase blobs in visual cortex of normal and strabismic monkeys. In: Cerebral Cortex. 1998 ; Vol. 8, No. 3. pp. 237-244.
@article{f50e231d45f14383b505a20ab251284a,
title = "Spacing of cytochrome oxidase blobs in visual cortex of normal and strabismic monkeys",
abstract = "Some models of visual cortical development are based on the assumption that the tangential organization of V1 is not determined prior to visual experience. In these models, correlated binocular activity is a key element in the formation of visual cortical columns, and when the degree of interocular correlation is reduced the models predict an increase in column spacing. To examine this prediction we measured the spacing of columns, as defined by cytochrome oxidase (CO) blobs, in the visual cortex of monkeys whose binocular vision was either normal or disrupted by a strabismus. The spatial distribution of blobs was examined in seven normal and five strabismic macaques. Tangential sections through the upper layers of the visual cortex were stained to reveal the two-dimensional (2D) pattern of CO blobs. Each blob was localized and their center-to-center spacing, packing arrangement and density were calculated using 2D nearest-neighbor spatial analyses. The mean center-to-center spacing of blobs (590 μm for normally reared and 598 μm for strabismic macaques) and the mean density of blobs (3.67 blobs/mm2 for normally reared and 3.45 blobs/mm2 for strabismic macaques) were not significantly different. In addition, the 2D packing arrangement of the blobs was not affected by strabismus. While it is clear that neural activity plays a key role in the elaboration and refinement of ocular dominance cortical modules, we conclude that it does not determine the spatial period of the pattern of CO blobs. This suggests that aspects of the neural circuitry underlying the columnar architecture of the visual cortex are established prenatally and its fundamental periodicity is not modifiable by experience.",
author = "Murphy, {Kathryn M.} and Jones, {David G.} and Fenstemaker, {Suzanne B.} and Pegado, {Victor D.} and Lynne Kiorpes and {Anthony Movshon}, J.",
year = "1998",
doi = "10.1093/cercor/8.3.237",
language = "English (US)",
volume = "8",
pages = "237--244",
journal = "Cerebral Cortex",
issn = "1047-3211",
publisher = "Oxford University Press",
number = "3",

}

TY - JOUR

T1 - Spacing of cytochrome oxidase blobs in visual cortex of normal and strabismic monkeys

AU - Murphy, Kathryn M.

AU - Jones, David G.

AU - Fenstemaker, Suzanne B.

AU - Pegado, Victor D.

AU - Kiorpes, Lynne

AU - Anthony Movshon, J.

PY - 1998

Y1 - 1998

N2 - Some models of visual cortical development are based on the assumption that the tangential organization of V1 is not determined prior to visual experience. In these models, correlated binocular activity is a key element in the formation of visual cortical columns, and when the degree of interocular correlation is reduced the models predict an increase in column spacing. To examine this prediction we measured the spacing of columns, as defined by cytochrome oxidase (CO) blobs, in the visual cortex of monkeys whose binocular vision was either normal or disrupted by a strabismus. The spatial distribution of blobs was examined in seven normal and five strabismic macaques. Tangential sections through the upper layers of the visual cortex were stained to reveal the two-dimensional (2D) pattern of CO blobs. Each blob was localized and their center-to-center spacing, packing arrangement and density were calculated using 2D nearest-neighbor spatial analyses. The mean center-to-center spacing of blobs (590 μm for normally reared and 598 μm for strabismic macaques) and the mean density of blobs (3.67 blobs/mm2 for normally reared and 3.45 blobs/mm2 for strabismic macaques) were not significantly different. In addition, the 2D packing arrangement of the blobs was not affected by strabismus. While it is clear that neural activity plays a key role in the elaboration and refinement of ocular dominance cortical modules, we conclude that it does not determine the spatial period of the pattern of CO blobs. This suggests that aspects of the neural circuitry underlying the columnar architecture of the visual cortex are established prenatally and its fundamental periodicity is not modifiable by experience.

AB - Some models of visual cortical development are based on the assumption that the tangential organization of V1 is not determined prior to visual experience. In these models, correlated binocular activity is a key element in the formation of visual cortical columns, and when the degree of interocular correlation is reduced the models predict an increase in column spacing. To examine this prediction we measured the spacing of columns, as defined by cytochrome oxidase (CO) blobs, in the visual cortex of monkeys whose binocular vision was either normal or disrupted by a strabismus. The spatial distribution of blobs was examined in seven normal and five strabismic macaques. Tangential sections through the upper layers of the visual cortex were stained to reveal the two-dimensional (2D) pattern of CO blobs. Each blob was localized and their center-to-center spacing, packing arrangement and density were calculated using 2D nearest-neighbor spatial analyses. The mean center-to-center spacing of blobs (590 μm for normally reared and 598 μm for strabismic macaques) and the mean density of blobs (3.67 blobs/mm2 for normally reared and 3.45 blobs/mm2 for strabismic macaques) were not significantly different. In addition, the 2D packing arrangement of the blobs was not affected by strabismus. While it is clear that neural activity plays a key role in the elaboration and refinement of ocular dominance cortical modules, we conclude that it does not determine the spatial period of the pattern of CO blobs. This suggests that aspects of the neural circuitry underlying the columnar architecture of the visual cortex are established prenatally and its fundamental periodicity is not modifiable by experience.

UR - http://www.scopus.com/inward/record.url?scp=0031978353&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031978353&partnerID=8YFLogxK

U2 - 10.1093/cercor/8.3.237

DO - 10.1093/cercor/8.3.237

M3 - Article

C2 - 9617918

AN - SCOPUS:0031978353

VL - 8

SP - 237

EP - 244

JO - Cerebral Cortex

JF - Cerebral Cortex

SN - 1047-3211

IS - 3

ER -