Sequential self-assembly of DNA functionalized droplets

Yin Zhang, Angus McMullen, Lea Laetitia Pontani, Xiaojin He, Ruojie Sha, Nadrian C. Seeman, Jasna Brujic, Paul M. Chaikin

Research output: Contribution to journalArticle

Abstract

Complex structures and devices, both natural and manmade, are often constructed sequentially. From crystallization to embryogenesis, a nucleus or seed is formed and built upon. Sequential assembly allows for initiation, signaling, and logical programming, which are necessary for making enclosed, hierarchical structures. Although biology relies on such schemes, they have not been available in materials science. Here, we demonstrate programmed sequential self-assembly of DNA functionalized emulsions. The droplets are initially inert because the grafted DNA strands are pre-hybridized in pairs. Active strands on initiator droplets then displace one of the paired strands and thus release its complement, which in turn activates the next droplet in the sequence, akin to living polymerization. Our strategy provides time and logic control during the self-assembly process, and offers a new perspective on the synthesis of materials.

Original languageEnglish (US)
Article number00070-0
JournalNature communications
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2017

    Fingerprint

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Cite this

Zhang, Y., McMullen, A., Pontani, L. L., He, X., Sha, R., Seeman, N. C., Brujic, J., & Chaikin, P. M. (2017). Sequential self-assembly of DNA functionalized droplets. Nature communications, 8(1), [00070-0]. https://doi.org/10.1038/s41467-017-00070-0