Separable Crossover-Promoting and Crossover-Constraining Aspects of Zip1 Activity during Budding Yeast Meiosis

Karen Voelkel-Meiman, Cassandra Johnston, Yashna Thappeta, Vijayalakshmi V. Subramanian, Andreas Hochwagen, Amy J. MacQueen

Research output: Contribution to journalArticle

Abstract

Accurate chromosome segregation during meiosis relies on the presence of crossover events distributed among all chromosomes. MutSγ and MutLγ homologs (Msh4/5 and Mlh1/3) facilitate the formation of a prominent group of meiotic crossovers that mature within the context of an elaborate chromosomal structure called the synaptonemal complex (SC). SC proteins are required for intermediate steps in the formation of MutSγ-MutLγ crossovers, but whether the assembled SC structure per se is required for MutSγ-MutLγ-dependent crossover recombination events is unknown. Here we describe an interspecies complementation experiment that reveals that the mature SC is dispensable for the formation of Mlh3-dependent crossovers in budding yeast. Zip1 forms a major structural component of the budding yeast SC, and is also required for MutSγ and MutLγ-dependent crossover formation. Kluyveromyces lactis ZIP1 expressed in place of Saccharomyces cerevisiae ZIP1 in S. cerevisiae cells fails to support SC assembly (synapsis) but promotes wild-type crossover levels in those nuclei that progress to form spores. While stable, full-length SC does not assemble in S. cerevisiae cells expressing K. lactis ZIP1, aggregates of K. lactis Zip1 displayed by S. cerevisiae meiotic nuclei are decorated with SC-associated proteins, and K. lactis Zip1 promotes the SUMOylation of the SC central element protein Ecm11, suggesting that K. lactis Zip1 functionally interfaces with components of the S. cerevisiae synapsis machinery. Moreover, K. lactis Zip1-mediated crossovers rely on S. cerevisiae synapsis initiation proteins Zip3, Zip4, Spo16, as well as the Mlh3 protein, as do the crossovers mediated by S. cerevisiae Zip1. Surprisingly, however, K. lactis Zip1-mediated crossovers are largely Msh4/Msh5 (MutSγ)-independent. This separation-of-function version of Zip1 thus reveals that neither assembled SC nor MutSγ is required for Mlh3-dependent crossover formation per se in budding yeast. Our data suggest that features of S. cerevisiae Zip1 or of the assembled SC in S. cerevisiae normally constrain MutLγ to preferentially promote resolution of MutSγ-associated recombination intermediates.

Original languageEnglish (US)
Article numbere1005335
JournalPLoS Genetics
Volume11
Issue number6
DOIs
StatePublished - Jul 1 2015

Fingerprint

Synaptonemal Complex
synaptonemal complex
Saccharomycetales
Meiosis
meiosis
yeast
Kluyveromyces marxianus var. lactis
Saccharomyces cerevisiae
yeasts
protein
recombination
Chromosome Pairing
chromosome
structural component
machinery
proteins
spore
Genetic Recombination
Proteins
Sumoylation

ASJC Scopus subject areas

  • Genetics
  • Molecular Biology
  • Ecology, Evolution, Behavior and Systematics
  • Cancer Research
  • Genetics(clinical)

Cite this

Separable Crossover-Promoting and Crossover-Constraining Aspects of Zip1 Activity during Budding Yeast Meiosis. / Voelkel-Meiman, Karen; Johnston, Cassandra; Thappeta, Yashna; Subramanian, Vijayalakshmi V.; Hochwagen, Andreas; MacQueen, Amy J.

In: PLoS Genetics, Vol. 11, No. 6, e1005335, 01.07.2015.

Research output: Contribution to journalArticle

Voelkel-Meiman, Karen ; Johnston, Cassandra ; Thappeta, Yashna ; Subramanian, Vijayalakshmi V. ; Hochwagen, Andreas ; MacQueen, Amy J. / Separable Crossover-Promoting and Crossover-Constraining Aspects of Zip1 Activity during Budding Yeast Meiosis. In: PLoS Genetics. 2015 ; Vol. 11, No. 6.
@article{813e08b8860f4e9699aa1a3fa68eb58e,
title = "Separable Crossover-Promoting and Crossover-Constraining Aspects of Zip1 Activity during Budding Yeast Meiosis",
abstract = "Accurate chromosome segregation during meiosis relies on the presence of crossover events distributed among all chromosomes. MutSγ and MutLγ homologs (Msh4/5 and Mlh1/3) facilitate the formation of a prominent group of meiotic crossovers that mature within the context of an elaborate chromosomal structure called the synaptonemal complex (SC). SC proteins are required for intermediate steps in the formation of MutSγ-MutLγ crossovers, but whether the assembled SC structure per se is required for MutSγ-MutLγ-dependent crossover recombination events is unknown. Here we describe an interspecies complementation experiment that reveals that the mature SC is dispensable for the formation of Mlh3-dependent crossovers in budding yeast. Zip1 forms a major structural component of the budding yeast SC, and is also required for MutSγ and MutLγ-dependent crossover formation. Kluyveromyces lactis ZIP1 expressed in place of Saccharomyces cerevisiae ZIP1 in S. cerevisiae cells fails to support SC assembly (synapsis) but promotes wild-type crossover levels in those nuclei that progress to form spores. While stable, full-length SC does not assemble in S. cerevisiae cells expressing K. lactis ZIP1, aggregates of K. lactis Zip1 displayed by S. cerevisiae meiotic nuclei are decorated with SC-associated proteins, and K. lactis Zip1 promotes the SUMOylation of the SC central element protein Ecm11, suggesting that K. lactis Zip1 functionally interfaces with components of the S. cerevisiae synapsis machinery. Moreover, K. lactis Zip1-mediated crossovers rely on S. cerevisiae synapsis initiation proteins Zip3, Zip4, Spo16, as well as the Mlh3 protein, as do the crossovers mediated by S. cerevisiae Zip1. Surprisingly, however, K. lactis Zip1-mediated crossovers are largely Msh4/Msh5 (MutSγ)-independent. This separation-of-function version of Zip1 thus reveals that neither assembled SC nor MutSγ is required for Mlh3-dependent crossover formation per se in budding yeast. Our data suggest that features of S. cerevisiae Zip1 or of the assembled SC in S. cerevisiae normally constrain MutLγ to preferentially promote resolution of MutSγ-associated recombination intermediates.",
author = "Karen Voelkel-Meiman and Cassandra Johnston and Yashna Thappeta and Subramanian, {Vijayalakshmi V.} and Andreas Hochwagen and MacQueen, {Amy J.}",
year = "2015",
month = "7",
day = "1",
doi = "10.1371/journal.pgen.1005335",
language = "English (US)",
volume = "11",
journal = "PLoS Genetics",
issn = "1553-7390",
publisher = "Public Library of Science",
number = "6",

}

TY - JOUR

T1 - Separable Crossover-Promoting and Crossover-Constraining Aspects of Zip1 Activity during Budding Yeast Meiosis

AU - Voelkel-Meiman, Karen

AU - Johnston, Cassandra

AU - Thappeta, Yashna

AU - Subramanian, Vijayalakshmi V.

AU - Hochwagen, Andreas

AU - MacQueen, Amy J.

PY - 2015/7/1

Y1 - 2015/7/1

N2 - Accurate chromosome segregation during meiosis relies on the presence of crossover events distributed among all chromosomes. MutSγ and MutLγ homologs (Msh4/5 and Mlh1/3) facilitate the formation of a prominent group of meiotic crossovers that mature within the context of an elaborate chromosomal structure called the synaptonemal complex (SC). SC proteins are required for intermediate steps in the formation of MutSγ-MutLγ crossovers, but whether the assembled SC structure per se is required for MutSγ-MutLγ-dependent crossover recombination events is unknown. Here we describe an interspecies complementation experiment that reveals that the mature SC is dispensable for the formation of Mlh3-dependent crossovers in budding yeast. Zip1 forms a major structural component of the budding yeast SC, and is also required for MutSγ and MutLγ-dependent crossover formation. Kluyveromyces lactis ZIP1 expressed in place of Saccharomyces cerevisiae ZIP1 in S. cerevisiae cells fails to support SC assembly (synapsis) but promotes wild-type crossover levels in those nuclei that progress to form spores. While stable, full-length SC does not assemble in S. cerevisiae cells expressing K. lactis ZIP1, aggregates of K. lactis Zip1 displayed by S. cerevisiae meiotic nuclei are decorated with SC-associated proteins, and K. lactis Zip1 promotes the SUMOylation of the SC central element protein Ecm11, suggesting that K. lactis Zip1 functionally interfaces with components of the S. cerevisiae synapsis machinery. Moreover, K. lactis Zip1-mediated crossovers rely on S. cerevisiae synapsis initiation proteins Zip3, Zip4, Spo16, as well as the Mlh3 protein, as do the crossovers mediated by S. cerevisiae Zip1. Surprisingly, however, K. lactis Zip1-mediated crossovers are largely Msh4/Msh5 (MutSγ)-independent. This separation-of-function version of Zip1 thus reveals that neither assembled SC nor MutSγ is required for Mlh3-dependent crossover formation per se in budding yeast. Our data suggest that features of S. cerevisiae Zip1 or of the assembled SC in S. cerevisiae normally constrain MutLγ to preferentially promote resolution of MutSγ-associated recombination intermediates.

AB - Accurate chromosome segregation during meiosis relies on the presence of crossover events distributed among all chromosomes. MutSγ and MutLγ homologs (Msh4/5 and Mlh1/3) facilitate the formation of a prominent group of meiotic crossovers that mature within the context of an elaborate chromosomal structure called the synaptonemal complex (SC). SC proteins are required for intermediate steps in the formation of MutSγ-MutLγ crossovers, but whether the assembled SC structure per se is required for MutSγ-MutLγ-dependent crossover recombination events is unknown. Here we describe an interspecies complementation experiment that reveals that the mature SC is dispensable for the formation of Mlh3-dependent crossovers in budding yeast. Zip1 forms a major structural component of the budding yeast SC, and is also required for MutSγ and MutLγ-dependent crossover formation. Kluyveromyces lactis ZIP1 expressed in place of Saccharomyces cerevisiae ZIP1 in S. cerevisiae cells fails to support SC assembly (synapsis) but promotes wild-type crossover levels in those nuclei that progress to form spores. While stable, full-length SC does not assemble in S. cerevisiae cells expressing K. lactis ZIP1, aggregates of K. lactis Zip1 displayed by S. cerevisiae meiotic nuclei are decorated with SC-associated proteins, and K. lactis Zip1 promotes the SUMOylation of the SC central element protein Ecm11, suggesting that K. lactis Zip1 functionally interfaces with components of the S. cerevisiae synapsis machinery. Moreover, K. lactis Zip1-mediated crossovers rely on S. cerevisiae synapsis initiation proteins Zip3, Zip4, Spo16, as well as the Mlh3 protein, as do the crossovers mediated by S. cerevisiae Zip1. Surprisingly, however, K. lactis Zip1-mediated crossovers are largely Msh4/Msh5 (MutSγ)-independent. This separation-of-function version of Zip1 thus reveals that neither assembled SC nor MutSγ is required for Mlh3-dependent crossover formation per se in budding yeast. Our data suggest that features of S. cerevisiae Zip1 or of the assembled SC in S. cerevisiae normally constrain MutLγ to preferentially promote resolution of MutSγ-associated recombination intermediates.

UR - http://www.scopus.com/inward/record.url?scp=84937797598&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84937797598&partnerID=8YFLogxK

U2 - 10.1371/journal.pgen.1005335

DO - 10.1371/journal.pgen.1005335

M3 - Article

C2 - 26114667

AN - SCOPUS:84937797598

VL - 11

JO - PLoS Genetics

JF - PLoS Genetics

SN - 1553-7390

IS - 6

M1 - e1005335

ER -