Search for WIMP inelastic scattering off xenon nuclei with XENON100

(XENON Collaboration)

Research output: Contribution to journalArticle

Abstract

We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64×103 kg·days. XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe129 interactions. A profile likelihood analysis allows us to set a 90% C.L. upper limit on the inelastic, spin-dependent WIMP-nucleon cross section of 3.3×10-38 cm2 at 100 GeV/c2. This is the most constraining result to date, and sets the pathway for an analysis of this interaction channel in upcoming, larger dual-phase xenon detectors.

Original languageEnglish (US)
Article number022008
JournalPhysical Review D
Volume96
Issue number2
DOIs
StatePublished - Jul 15 2017

Fingerprint

weakly interacting massive particles
xenon
inelastic scattering
nuclei
particle interactions
nucleons
Italy
scattering cross sections
chambers
projection
signatures
interactions
detectors
cross sections
photons
profiles

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Cite this

Search for WIMP inelastic scattering off xenon nuclei with XENON100. / (XENON Collaboration).

In: Physical Review D, Vol. 96, No. 2, 022008, 15.07.2017.

Research output: Contribution to journalArticle

@article{f0148bc526534df39ac3fda20253562a,
title = "Search for WIMP inelastic scattering off xenon nuclei with XENON100",
abstract = "We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64×103 kg·days. XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe129 interactions. A profile likelihood analysis allows us to set a 90{\%} C.L. upper limit on the inelastic, spin-dependent WIMP-nucleon cross section of 3.3×10-38 cm2 at 100 GeV/c2. This is the most constraining result to date, and sets the pathway for an analysis of this interaction channel in upcoming, larger dual-phase xenon detectors.",
author = "{(XENON Collaboration)} and E. Aprile and J. Aalbers and F. Agostini and M. Alfonsi and Amaro, {F. D.} and M. Anthony and Francesco Arneodo and P. Barrow and L. Baudis and B. Bauermeister and {Lotfi Benabderrhmane}, Mohamed and T. Berger and Breur, {P. A.} and A. Brown and E. Brown and S. Bruenner and G. Bruno and R. Budnik and L. B{\"u}tikofer and J. Calv{\'e}n and Cardoso, {J. M.R.} and M. Cervantes and D. Cichon and D. Coderre and Colijn, {A. P.} and J. Conrad and Cussonneau, {J. P.} and Decowski, {M. P.} and {De Perio}, P. and {Di Gangi}, P. and {Di Giovanni}, A. and S. Diglio and G. Eurin and J. Fei and Ferella, {A. D.} and A. Fieguth and W. Fulgione and {Gallo Rosso}, A. and M. Galloway and F. Gao and M. Garbini and C. Geis and Goetzke, {L. W.} and Z. Greene and C. Grignon and C. Hasterok and E. Hogenbirk and R. Itay and B. Kaminsky and S. Kazama",
year = "2017",
month = "7",
day = "15",
doi = "10.1103/PhysRevD.96.022008",
language = "English (US)",
volume = "96",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Physical Society",
number = "2",

}

TY - JOUR

T1 - Search for WIMP inelastic scattering off xenon nuclei with XENON100

AU - (XENON Collaboration)

AU - Aprile, E.

AU - Aalbers, J.

AU - Agostini, F.

AU - Alfonsi, M.

AU - Amaro, F. D.

AU - Anthony, M.

AU - Arneodo, Francesco

AU - Barrow, P.

AU - Baudis, L.

AU - Bauermeister, B.

AU - Lotfi Benabderrhmane, Mohamed

AU - Berger, T.

AU - Breur, P. A.

AU - Brown, A.

AU - Brown, E.

AU - Bruenner, S.

AU - Bruno, G.

AU - Budnik, R.

AU - Bütikofer, L.

AU - Calvén, J.

AU - Cardoso, J. M.R.

AU - Cervantes, M.

AU - Cichon, D.

AU - Coderre, D.

AU - Colijn, A. P.

AU - Conrad, J.

AU - Cussonneau, J. P.

AU - Decowski, M. P.

AU - De Perio, P.

AU - Di Gangi, P.

AU - Di Giovanni, A.

AU - Diglio, S.

AU - Eurin, G.

AU - Fei, J.

AU - Ferella, A. D.

AU - Fieguth, A.

AU - Fulgione, W.

AU - Gallo Rosso, A.

AU - Galloway, M.

AU - Gao, F.

AU - Garbini, M.

AU - Geis, C.

AU - Goetzke, L. W.

AU - Greene, Z.

AU - Grignon, C.

AU - Hasterok, C.

AU - Hogenbirk, E.

AU - Itay, R.

AU - Kaminsky, B.

AU - Kazama, S.

PY - 2017/7/15

Y1 - 2017/7/15

N2 - We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64×103 kg·days. XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe129 interactions. A profile likelihood analysis allows us to set a 90% C.L. upper limit on the inelastic, spin-dependent WIMP-nucleon cross section of 3.3×10-38 cm2 at 100 GeV/c2. This is the most constraining result to date, and sets the pathway for an analysis of this interaction channel in upcoming, larger dual-phase xenon detectors.

AB - We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64×103 kg·days. XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe129 interactions. A profile likelihood analysis allows us to set a 90% C.L. upper limit on the inelastic, spin-dependent WIMP-nucleon cross section of 3.3×10-38 cm2 at 100 GeV/c2. This is the most constraining result to date, and sets the pathway for an analysis of this interaction channel in upcoming, larger dual-phase xenon detectors.

UR - http://www.scopus.com/inward/record.url?scp=85027021058&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85027021058&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.96.022008

DO - 10.1103/PhysRevD.96.022008

M3 - Article

VL - 96

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 2

M1 - 022008

ER -