Scanning tunneling spectroscopy of a superlattice superconductor: Bi2Sr2CaCu2O8

E. L. Wolf

Research output: Contribution to journalArticle

Abstract

It is clear that many of the cuprate superconductors are truly superlattices, composed of sheets whose individual superconducting critical temperatures may approach bulk values. Such a cuprate is Bi2Sr2CaCu2O8, often referred to as BSCCO-2212. Scanning tunneling spectroscopy (vacuum tunneling) applied to a-b BiO cleavage planes of Tc≈90 K BSCCO single crystals under liquid helium simultaneously provides topography and local dI/dV spectra (superconducting density of states: DOS). The spectra, which are similar to those obtained from angle-resolved photoemission spectroscopy, confirm a large gap parameter Δ(x,y) on the uppermost layer. The dI/dV spectra do not unequivocally select order parameter symmetry, but are probably consistent with d-wave or anisotropic s-wave states. Spatial variations of Δ on a 100 Å scale are attributed to variation in BiO metallicity, originating in oxygen stoichiometry variations. A model is presented to explain the different dI/dV spectra which are seen, and associated with different local oxygen concentrations. This model, based on the superconducting proximity effect, assumes that in some regions the BiO uppermost layer is insulating and in other regions it is metallic, in the latter case induced superconductivity by proximity to the CuO2 planes. Our STM measurements appear to sample only the uppermost half cell of the crystal, and contain no obvious superlattice features. Recent measurements have confirmed Josephson radiation from voltage biased c-axis pillars of BSCCO. From the point of view of the present work, the superconducting systems which weakly couple along the c-direction to create Josephson junctions are probably half-cell slabs of height 15.4 Å, each containing two CuO2 and two BiO layers, which act as single composite electrodes for the Josephson junctions.

Original languageEnglish (US)
Pages (from-to)304-312
Number of pages9
JournalSuperlattices and Microstructures
Volume19
Issue number4
StatePublished - Jun 1996

Fingerprint

Superconducting materials
Spectroscopy
Oxygen
Scanning
DOS
Helium
scanning
Superlattices
Photoelectron spectroscopy
Superconductivity
Stoichiometry
Josephson junctions
Topography
spectroscopy
cuprates
vacuum spectroscopy
Single crystals
Vacuum
Radiation
Crystals

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Cite this

Scanning tunneling spectroscopy of a superlattice superconductor : Bi2Sr2CaCu2O8. / Wolf, E. L.

In: Superlattices and Microstructures, Vol. 19, No. 4, 06.1996, p. 304-312.

Research output: Contribution to journalArticle

@article{accc525ea4244cbc8bfe1b0b4fa1a2fa,
title = "Scanning tunneling spectroscopy of a superlattice superconductor: Bi2Sr2CaCu2O8",
abstract = "It is clear that many of the cuprate superconductors are truly superlattices, composed of sheets whose individual superconducting critical temperatures may approach bulk values. Such a cuprate is Bi2Sr2CaCu2O8, often referred to as BSCCO-2212. Scanning tunneling spectroscopy (vacuum tunneling) applied to a-b BiO cleavage planes of Tc≈90 K BSCCO single crystals under liquid helium simultaneously provides topography and local dI/dV spectra (superconducting density of states: DOS). The spectra, which are similar to those obtained from angle-resolved photoemission spectroscopy, confirm a large gap parameter Δ(x,y) on the uppermost layer. The dI/dV spectra do not unequivocally select order parameter symmetry, but are probably consistent with d-wave or anisotropic s-wave states. Spatial variations of Δ on a 100 {\AA} scale are attributed to variation in BiO metallicity, originating in oxygen stoichiometry variations. A model is presented to explain the different dI/dV spectra which are seen, and associated with different local oxygen concentrations. This model, based on the superconducting proximity effect, assumes that in some regions the BiO uppermost layer is insulating and in other regions it is metallic, in the latter case induced superconductivity by proximity to the CuO2 planes. Our STM measurements appear to sample only the uppermost half cell of the crystal, and contain no obvious superlattice features. Recent measurements have confirmed Josephson radiation from voltage biased c-axis pillars of BSCCO. From the point of view of the present work, the superconducting systems which weakly couple along the c-direction to create Josephson junctions are probably half-cell slabs of height 15.4 {\AA}, each containing two CuO2 and two BiO layers, which act as single composite electrodes for the Josephson junctions.",
author = "Wolf, {E. L.}",
year = "1996",
month = "6",
language = "English (US)",
volume = "19",
pages = "304--312",
journal = "Superlattices and Microstructures",
issn = "0749-6036",
publisher = "Academic Press Inc.",
number = "4",

}

TY - JOUR

T1 - Scanning tunneling spectroscopy of a superlattice superconductor

T2 - Bi2Sr2CaCu2O8

AU - Wolf, E. L.

PY - 1996/6

Y1 - 1996/6

N2 - It is clear that many of the cuprate superconductors are truly superlattices, composed of sheets whose individual superconducting critical temperatures may approach bulk values. Such a cuprate is Bi2Sr2CaCu2O8, often referred to as BSCCO-2212. Scanning tunneling spectroscopy (vacuum tunneling) applied to a-b BiO cleavage planes of Tc≈90 K BSCCO single crystals under liquid helium simultaneously provides topography and local dI/dV spectra (superconducting density of states: DOS). The spectra, which are similar to those obtained from angle-resolved photoemission spectroscopy, confirm a large gap parameter Δ(x,y) on the uppermost layer. The dI/dV spectra do not unequivocally select order parameter symmetry, but are probably consistent with d-wave or anisotropic s-wave states. Spatial variations of Δ on a 100 Å scale are attributed to variation in BiO metallicity, originating in oxygen stoichiometry variations. A model is presented to explain the different dI/dV spectra which are seen, and associated with different local oxygen concentrations. This model, based on the superconducting proximity effect, assumes that in some regions the BiO uppermost layer is insulating and in other regions it is metallic, in the latter case induced superconductivity by proximity to the CuO2 planes. Our STM measurements appear to sample only the uppermost half cell of the crystal, and contain no obvious superlattice features. Recent measurements have confirmed Josephson radiation from voltage biased c-axis pillars of BSCCO. From the point of view of the present work, the superconducting systems which weakly couple along the c-direction to create Josephson junctions are probably half-cell slabs of height 15.4 Å, each containing two CuO2 and two BiO layers, which act as single composite electrodes for the Josephson junctions.

AB - It is clear that many of the cuprate superconductors are truly superlattices, composed of sheets whose individual superconducting critical temperatures may approach bulk values. Such a cuprate is Bi2Sr2CaCu2O8, often referred to as BSCCO-2212. Scanning tunneling spectroscopy (vacuum tunneling) applied to a-b BiO cleavage planes of Tc≈90 K BSCCO single crystals under liquid helium simultaneously provides topography and local dI/dV spectra (superconducting density of states: DOS). The spectra, which are similar to those obtained from angle-resolved photoemission spectroscopy, confirm a large gap parameter Δ(x,y) on the uppermost layer. The dI/dV spectra do not unequivocally select order parameter symmetry, but are probably consistent with d-wave or anisotropic s-wave states. Spatial variations of Δ on a 100 Å scale are attributed to variation in BiO metallicity, originating in oxygen stoichiometry variations. A model is presented to explain the different dI/dV spectra which are seen, and associated with different local oxygen concentrations. This model, based on the superconducting proximity effect, assumes that in some regions the BiO uppermost layer is insulating and in other regions it is metallic, in the latter case induced superconductivity by proximity to the CuO2 planes. Our STM measurements appear to sample only the uppermost half cell of the crystal, and contain no obvious superlattice features. Recent measurements have confirmed Josephson radiation from voltage biased c-axis pillars of BSCCO. From the point of view of the present work, the superconducting systems which weakly couple along the c-direction to create Josephson junctions are probably half-cell slabs of height 15.4 Å, each containing two CuO2 and two BiO layers, which act as single composite electrodes for the Josephson junctions.

UR - http://www.scopus.com/inward/record.url?scp=0029703812&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029703812&partnerID=8YFLogxK

M3 - Article

VL - 19

SP - 304

EP - 312

JO - Superlattices and Microstructures

JF - Superlattices and Microstructures

SN - 0749-6036

IS - 4

ER -