Scaling Laws at Large Transverse Momentum

Stanley J. Brodsky, Glennys R. Farrar

    Research output: Contribution to journalArticle

    Abstract

    The application of simple dimensional counting to bound states of pointlike particles enables us to derive scaling laws for the asymptotic energy dependence of electromagnetic and hadronic scattering at fixed c.m. angle which only depend on the number of constituent fields of the hadrons. Assuming quark constituents, some of the s→, fixed-ts predictions are (dσdt)πp→πp∼s-8, (dσdt)pp→pp∼s-10, (dσdt)γp→πp∼s-7, (dσdt)γp→γp∼s-6, Fπ(q2)∼(q2)-1, and F1p(q2)∼(q2)-2. We show that such scaling laws are characteristic of renormalizable field theories satisfying certain conditions.

    Original languageEnglish (US)
    Pages (from-to)1153-1156
    Number of pages4
    JournalPhysical Review Letters
    Volume31
    Issue number18
    DOIs
    StatePublished - 1973

    Fingerprint

    transverse momentum
    scaling laws
    electromagnetic scattering
    hadrons
    counting
    quarks
    predictions
    scattering
    energy

    ASJC Scopus subject areas

    • Physics and Astronomy(all)

    Cite this

    Scaling Laws at Large Transverse Momentum. / Brodsky, Stanley J.; Farrar, Glennys R.

    In: Physical Review Letters, Vol. 31, No. 18, 1973, p. 1153-1156.

    Research output: Contribution to journalArticle

    Brodsky, Stanley J. ; Farrar, Glennys R. / Scaling Laws at Large Transverse Momentum. In: Physical Review Letters. 1973 ; Vol. 31, No. 18. pp. 1153-1156.
    @article{98078c093ee04b348ae4ac46b0c5cddd,
    title = "Scaling Laws at Large Transverse Momentum",
    abstract = "The application of simple dimensional counting to bound states of pointlike particles enables us to derive scaling laws for the asymptotic energy dependence of electromagnetic and hadronic scattering at fixed c.m. angle which only depend on the number of constituent fields of the hadrons. Assuming quark constituents, some of the s→, fixed-ts predictions are (dσdt)πp→πp∼s-8, (dσdt)pp→pp∼s-10, (dσdt)γp→πp∼s-7, (dσdt)γp→γp∼s-6, Fπ(q2)∼(q2)-1, and F1p(q2)∼(q2)-2. We show that such scaling laws are characteristic of renormalizable field theories satisfying certain conditions.",
    author = "Brodsky, {Stanley J.} and Farrar, {Glennys R.}",
    year = "1973",
    doi = "10.1103/PhysRevLett.31.1153",
    language = "English (US)",
    volume = "31",
    pages = "1153--1156",
    journal = "Physical Review Letters",
    issn = "0031-9007",
    publisher = "American Physical Society",
    number = "18",

    }

    TY - JOUR

    T1 - Scaling Laws at Large Transverse Momentum

    AU - Brodsky, Stanley J.

    AU - Farrar, Glennys R.

    PY - 1973

    Y1 - 1973

    N2 - The application of simple dimensional counting to bound states of pointlike particles enables us to derive scaling laws for the asymptotic energy dependence of electromagnetic and hadronic scattering at fixed c.m. angle which only depend on the number of constituent fields of the hadrons. Assuming quark constituents, some of the s→, fixed-ts predictions are (dσdt)πp→πp∼s-8, (dσdt)pp→pp∼s-10, (dσdt)γp→πp∼s-7, (dσdt)γp→γp∼s-6, Fπ(q2)∼(q2)-1, and F1p(q2)∼(q2)-2. We show that such scaling laws are characteristic of renormalizable field theories satisfying certain conditions.

    AB - The application of simple dimensional counting to bound states of pointlike particles enables us to derive scaling laws for the asymptotic energy dependence of electromagnetic and hadronic scattering at fixed c.m. angle which only depend on the number of constituent fields of the hadrons. Assuming quark constituents, some of the s→, fixed-ts predictions are (dσdt)πp→πp∼s-8, (dσdt)pp→pp∼s-10, (dσdt)γp→πp∼s-7, (dσdt)γp→γp∼s-6, Fπ(q2)∼(q2)-1, and F1p(q2)∼(q2)-2. We show that such scaling laws are characteristic of renormalizable field theories satisfying certain conditions.

    UR - http://www.scopus.com/inward/record.url?scp=33344467945&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=33344467945&partnerID=8YFLogxK

    U2 - 10.1103/PhysRevLett.31.1153

    DO - 10.1103/PhysRevLett.31.1153

    M3 - Article

    VL - 31

    SP - 1153

    EP - 1156

    JO - Physical Review Letters

    JF - Physical Review Letters

    SN - 0031-9007

    IS - 18

    ER -