Rotational and translational positions determine the structural and dynamic impact of a single ribonucleotide incorporated in the nucleosome

Research output: Contribution to journalArticle

Abstract

Ribonucleotides misincorporated by replicative DNA polymerases are by far the most common DNA lesion. The presence of ribonucleotides in DNA is associated with genome instability, causing replication stress, chromosome fragility, gross chromosomal rearrangements, and other mutagenic events. Furthermore, nucleosome and chromatin assembly as well as nucleosome positioning are affected by the presence of ribonucleotides. Notably, nucleosome formation is significantly reduced by a single ribonucleotide. Single ribonucleotides are primarily removed from DNA by the ribonucleotide excision repair (RER) pathway via the RNase H2 enzyme, which incises the DNA backbone on the 5′-side of the ribonucleotide. While the structural implications of a single ribonucleotide in free duplex DNA have been well studied, how a single ribonucleotide embedded in nucleosomal DNA impacts nucleosome structure and dynamics, and the possible consequent impact on RER, have not been explored. We have carried out 3.5 μs molecular dynamics simulations of a single ribonucleotide incorporated at various translational and rotational positions in a nucleosome core particle. We find that the presence of the 2′−OH group on the ribose impacts the local conformation and dynamics of both the ribonucleotide and nearby DNA nucleotides as well as their interactions with histones; the nature of these disturbances depends on the rotational and translational setting, including whether the ribose faces toward or away from the histones. The ribonucleotide's preferred C3′-endo pucker is stabilized by interactions with the histones, and furthermore the ribonucleotide can cause dynamic local duplex disturbance involving an abnormal C3′-endo population of the adjacent deoxyribose pucker, minor groove opening, ruptured Watson-Crick pairing, and duplex unwinding that are governed by translation-dependent histone-nucleotide interactions. Possible effects of these disturbances on RER are considered.

Original languageEnglish (US)
JournalDNA Repair
DOIs
StateAccepted/In press - Jan 1 2018

Fingerprint

Ribonucleotides
Nucleosomes
DNA
Histones
DNA Repair
Repair
Ribose
Chromosome Fragility
Nucleotides
Deoxyribose
Chromatin Assembly and Disassembly
Genomic Instability
DNA-Directed DNA Polymerase
Molecular Dynamics Simulation
Ribonucleases
Chromosomes

Keywords

  • Molecular dynamics simulation
  • Nucleosome core particle
  • Ribonucleotide
  • Ribonucleotide excision repair

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

@article{671eb59114b648a5b167aac46150cfb2,
title = "Rotational and translational positions determine the structural and dynamic impact of a single ribonucleotide incorporated in the nucleosome",
abstract = "Ribonucleotides misincorporated by replicative DNA polymerases are by far the most common DNA lesion. The presence of ribonucleotides in DNA is associated with genome instability, causing replication stress, chromosome fragility, gross chromosomal rearrangements, and other mutagenic events. Furthermore, nucleosome and chromatin assembly as well as nucleosome positioning are affected by the presence of ribonucleotides. Notably, nucleosome formation is significantly reduced by a single ribonucleotide. Single ribonucleotides are primarily removed from DNA by the ribonucleotide excision repair (RER) pathway via the RNase H2 enzyme, which incises the DNA backbone on the 5′-side of the ribonucleotide. While the structural implications of a single ribonucleotide in free duplex DNA have been well studied, how a single ribonucleotide embedded in nucleosomal DNA impacts nucleosome structure and dynamics, and the possible consequent impact on RER, have not been explored. We have carried out 3.5 μs molecular dynamics simulations of a single ribonucleotide incorporated at various translational and rotational positions in a nucleosome core particle. We find that the presence of the 2′−OH group on the ribose impacts the local conformation and dynamics of both the ribonucleotide and nearby DNA nucleotides as well as their interactions with histones; the nature of these disturbances depends on the rotational and translational setting, including whether the ribose faces toward or away from the histones. The ribonucleotide's preferred C3′-endo pucker is stabilized by interactions with the histones, and furthermore the ribonucleotide can cause dynamic local duplex disturbance involving an abnormal C3′-endo population of the adjacent deoxyribose pucker, minor groove opening, ruptured Watson-Crick pairing, and duplex unwinding that are governed by translation-dependent histone-nucleotide interactions. Possible effects of these disturbances on RER are considered.",
keywords = "Molecular dynamics simulation, Nucleosome core particle, Ribonucleotide, Ribonucleotide excision repair",
author = "Iwen Fu and Duncan Smith and Suse Broyde",
year = "2018",
month = "1",
day = "1",
doi = "10.1016/j.dnarep.2018.11.012",
language = "English (US)",
journal = "DNA Repair",
issn = "1568-7864",
publisher = "Elsevier",

}

TY - JOUR

T1 - Rotational and translational positions determine the structural and dynamic impact of a single ribonucleotide incorporated in the nucleosome

AU - Fu, Iwen

AU - Smith, Duncan

AU - Broyde, Suse

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Ribonucleotides misincorporated by replicative DNA polymerases are by far the most common DNA lesion. The presence of ribonucleotides in DNA is associated with genome instability, causing replication stress, chromosome fragility, gross chromosomal rearrangements, and other mutagenic events. Furthermore, nucleosome and chromatin assembly as well as nucleosome positioning are affected by the presence of ribonucleotides. Notably, nucleosome formation is significantly reduced by a single ribonucleotide. Single ribonucleotides are primarily removed from DNA by the ribonucleotide excision repair (RER) pathway via the RNase H2 enzyme, which incises the DNA backbone on the 5′-side of the ribonucleotide. While the structural implications of a single ribonucleotide in free duplex DNA have been well studied, how a single ribonucleotide embedded in nucleosomal DNA impacts nucleosome structure and dynamics, and the possible consequent impact on RER, have not been explored. We have carried out 3.5 μs molecular dynamics simulations of a single ribonucleotide incorporated at various translational and rotational positions in a nucleosome core particle. We find that the presence of the 2′−OH group on the ribose impacts the local conformation and dynamics of both the ribonucleotide and nearby DNA nucleotides as well as their interactions with histones; the nature of these disturbances depends on the rotational and translational setting, including whether the ribose faces toward or away from the histones. The ribonucleotide's preferred C3′-endo pucker is stabilized by interactions with the histones, and furthermore the ribonucleotide can cause dynamic local duplex disturbance involving an abnormal C3′-endo population of the adjacent deoxyribose pucker, minor groove opening, ruptured Watson-Crick pairing, and duplex unwinding that are governed by translation-dependent histone-nucleotide interactions. Possible effects of these disturbances on RER are considered.

AB - Ribonucleotides misincorporated by replicative DNA polymerases are by far the most common DNA lesion. The presence of ribonucleotides in DNA is associated with genome instability, causing replication stress, chromosome fragility, gross chromosomal rearrangements, and other mutagenic events. Furthermore, nucleosome and chromatin assembly as well as nucleosome positioning are affected by the presence of ribonucleotides. Notably, nucleosome formation is significantly reduced by a single ribonucleotide. Single ribonucleotides are primarily removed from DNA by the ribonucleotide excision repair (RER) pathway via the RNase H2 enzyme, which incises the DNA backbone on the 5′-side of the ribonucleotide. While the structural implications of a single ribonucleotide in free duplex DNA have been well studied, how a single ribonucleotide embedded in nucleosomal DNA impacts nucleosome structure and dynamics, and the possible consequent impact on RER, have not been explored. We have carried out 3.5 μs molecular dynamics simulations of a single ribonucleotide incorporated at various translational and rotational positions in a nucleosome core particle. We find that the presence of the 2′−OH group on the ribose impacts the local conformation and dynamics of both the ribonucleotide and nearby DNA nucleotides as well as their interactions with histones; the nature of these disturbances depends on the rotational and translational setting, including whether the ribose faces toward or away from the histones. The ribonucleotide's preferred C3′-endo pucker is stabilized by interactions with the histones, and furthermore the ribonucleotide can cause dynamic local duplex disturbance involving an abnormal C3′-endo population of the adjacent deoxyribose pucker, minor groove opening, ruptured Watson-Crick pairing, and duplex unwinding that are governed by translation-dependent histone-nucleotide interactions. Possible effects of these disturbances on RER are considered.

KW - Molecular dynamics simulation

KW - Nucleosome core particle

KW - Ribonucleotide

KW - Ribonucleotide excision repair

UR - http://www.scopus.com/inward/record.url?scp=85057804986&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85057804986&partnerID=8YFLogxK

U2 - 10.1016/j.dnarep.2018.11.012

DO - 10.1016/j.dnarep.2018.11.012

M3 - Article

C2 - 30522887

AN - SCOPUS:85057804986

JO - DNA Repair

JF - DNA Repair

SN - 1568-7864

ER -