Rigidity of invariant convex sets in symmetric spaces

Bruce Kleiner, Bernhard Leeb

Research output: Contribution to journalArticle

Abstract

The main result implies that a proper convex subset of an irreducible higher rank symmetric space cannot have Zariski dense stabilizer.

Original languageEnglish (US)
Pages (from-to)657-676
Number of pages20
JournalInventiones Mathematicae
Volume163
Issue number3
DOIs
StatePublished - Mar 2006

Fingerprint

Invariant Set
Symmetric Spaces
Convex Sets
Rigidity
Imply
Subset

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Rigidity of invariant convex sets in symmetric spaces. / Kleiner, Bruce; Leeb, Bernhard.

In: Inventiones Mathematicae, Vol. 163, No. 3, 03.2006, p. 657-676.

Research output: Contribution to journalArticle

Kleiner, Bruce ; Leeb, Bernhard. / Rigidity of invariant convex sets in symmetric spaces. In: Inventiones Mathematicae. 2006 ; Vol. 163, No. 3. pp. 657-676.
@article{10b7460ba3264bc989794c40d80f3b05,
title = "Rigidity of invariant convex sets in symmetric spaces",
abstract = "The main result implies that a proper convex subset of an irreducible higher rank symmetric space cannot have Zariski dense stabilizer.",
author = "Bruce Kleiner and Bernhard Leeb",
year = "2006",
month = "3",
doi = "10.1007/s00222-005-0471-y",
language = "English (US)",
volume = "163",
pages = "657--676",
journal = "Inventiones Mathematicae",
issn = "0020-9910",
publisher = "Springer New York",
number = "3",

}

TY - JOUR

T1 - Rigidity of invariant convex sets in symmetric spaces

AU - Kleiner, Bruce

AU - Leeb, Bernhard

PY - 2006/3

Y1 - 2006/3

N2 - The main result implies that a proper convex subset of an irreducible higher rank symmetric space cannot have Zariski dense stabilizer.

AB - The main result implies that a proper convex subset of an irreducible higher rank symmetric space cannot have Zariski dense stabilizer.

UR - http://www.scopus.com/inward/record.url?scp=32144451019&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=32144451019&partnerID=8YFLogxK

U2 - 10.1007/s00222-005-0471-y

DO - 10.1007/s00222-005-0471-y

M3 - Article

AN - SCOPUS:32144451019

VL - 163

SP - 657

EP - 676

JO - Inventiones Mathematicae

JF - Inventiones Mathematicae

SN - 0020-9910

IS - 3

ER -