Riesz transform under perturbations via heat kernel regularity

Renjin Jiang, Fang-Hua Lin

Research output: Contribution to journalArticle

Abstract

Let M be a complete non-compact Riemannian manifold. In this paper, we derive sufficient conditions on metric perturbation for stability of L p -boundedness of the Riesz transform, p∈(2,∞). We also provide counter-examples regarding in-stability for L p -boundedness of Riesz transform.

Original languageEnglish (US)
JournalJournal des Mathematiques Pures et Appliquees
DOIs
StatePublished - Jan 1 2019

Fingerprint

Riesz Transform
Heat Kernel
Boundedness
Regularity
Perturbation
Noncompact Manifold
Riemannian Manifold
Counterexample
Metric
Sufficient Conditions
Hot Temperature

Keywords

  • Harmonic functions
  • Heat kernels
  • Perturbation
  • Riesz transform

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Riesz transform under perturbations via heat kernel regularity. / Jiang, Renjin; Lin, Fang-Hua.

In: Journal des Mathematiques Pures et Appliquees, 01.01.2019.

Research output: Contribution to journalArticle

@article{adbeb1c109eb4d87970fee3e0588eb00,
title = "Riesz transform under perturbations via heat kernel regularity",
abstract = "Let M be a complete non-compact Riemannian manifold. In this paper, we derive sufficient conditions on metric perturbation for stability of L p -boundedness of the Riesz transform, p∈(2,∞). We also provide counter-examples regarding in-stability for L p -boundedness of Riesz transform.",
keywords = "Harmonic functions, Heat kernels, Perturbation, Riesz transform",
author = "Renjin Jiang and Fang-Hua Lin",
year = "2019",
month = "1",
day = "1",
doi = "10.1016/j.matpur.2019.02.009",
language = "English (US)",
journal = "Journal des Mathematiques Pures et Appliquees",
issn = "0021-7824",
publisher = "Elsevier Masson SAS",

}

TY - JOUR

T1 - Riesz transform under perturbations via heat kernel regularity

AU - Jiang, Renjin

AU - Lin, Fang-Hua

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Let M be a complete non-compact Riemannian manifold. In this paper, we derive sufficient conditions on metric perturbation for stability of L p -boundedness of the Riesz transform, p∈(2,∞). We also provide counter-examples regarding in-stability for L p -boundedness of Riesz transform.

AB - Let M be a complete non-compact Riemannian manifold. In this paper, we derive sufficient conditions on metric perturbation for stability of L p -boundedness of the Riesz transform, p∈(2,∞). We also provide counter-examples regarding in-stability for L p -boundedness of Riesz transform.

KW - Harmonic functions

KW - Heat kernels

KW - Perturbation

KW - Riesz transform

UR - http://www.scopus.com/inward/record.url?scp=85061458031&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85061458031&partnerID=8YFLogxK

U2 - 10.1016/j.matpur.2019.02.009

DO - 10.1016/j.matpur.2019.02.009

M3 - Article

JO - Journal des Mathematiques Pures et Appliquees

JF - Journal des Mathematiques Pures et Appliquees

SN - 0021-7824

ER -