Real time in situ monitoring of surfaces during glow discharge processing: NH3 and H2 plasma passivation of GaAs

Eray Aydil, Zhen H. Zhou, Richard A. Gottscho, Yves J. Chabal

Research output: Contribution to journalArticle

Abstract

Numerous device applications of GaAs are hampered by poor electronic properties of GaAs surfaces and interfaces. Room temperature NH3 and H2 downstream plasma passivation of native oxide contaminated GaAs surfaces is investigated using attenuated-total-reflection (ATR) Fourier-transform-infrared spectroscopy (FTIR) and photoluminescence (PL). Using ATR FTIR concentrations of -As-O, -As-H, H-OH, and C-H bonds are monitored in situ and in real time during exposure of the GaAs surface to H (D) atoms from a microwave discharge through NH3 (ND3) and H2 (D2). Photoluminescence intensity from the GaAs is monitored simultaneously with the FTIR spectra and used as a measure of surface state reduction. At room temperature, H atoms produced from the discharge remove -As-O and C-H contaminants but not Ga2O3. The appearance of As-H bonds and corresponding increase in PL are delayed significantly from plasma initiation, an increase in -O-H concentration, and removal of -As-O bonds. Because the As antisite defects are concentrated at the GaAs-oxide interface, the rates of As-H formation and PL enhancement may be limited by diffusion of H through the oxide and water layer which forms on the surface. We find that the concentration of physisorbed H2O on the GaAs surface increases throughout passivation. There are two sources of water detected on the surface: (i) reduction of As-O bonds and (ii) reaction of H with the quartz reactor walls. Ga2O3 grows on the surface via oxidation of GaAs by the physisorbed water. We surmise that higher H concentration in NH3 plasmas results in faster water accumulation on the surface and trapping of the As-H species subsurface. In H2 plasma, water accumulation on the surface is slower and trapping of As-H is not observed.

Original languageEnglish (US)
Pages (from-to)258-267
Number of pages10
JournalJournal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
Volume13
Issue number2
DOIs
StatePublished - Mar 1 1995

Fingerprint

Glow discharges
Passivation
glow discharges
passivity
Plasmas
Monitoring
Processing
Photoluminescence
Fourier transform infrared spectroscopy
photoluminescence
Water
water
infrared spectroscopy
Hydrogen
Oxides
oxides
trapping
Atoms
antisite defects
Surface states

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Cite this

Real time in situ monitoring of surfaces during glow discharge processing : NH3 and H2 plasma passivation of GaAs. / Aydil, Eray; Zhou, Zhen H.; Gottscho, Richard A.; Chabal, Yves J.

In: Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, Vol. 13, No. 2, 01.03.1995, p. 258-267.

Research output: Contribution to journalArticle

@article{42905350b2fc49009af022e24045a7ea,
title = "Real time in situ monitoring of surfaces during glow discharge processing: NH3 and H2 plasma passivation of GaAs",
abstract = "Numerous device applications of GaAs are hampered by poor electronic properties of GaAs surfaces and interfaces. Room temperature NH3 and H2 downstream plasma passivation of native oxide contaminated GaAs surfaces is investigated using attenuated-total-reflection (ATR) Fourier-transform-infrared spectroscopy (FTIR) and photoluminescence (PL). Using ATR FTIR concentrations of -As-O, -As-H, H-OH, and C-H bonds are monitored in situ and in real time during exposure of the GaAs surface to H (D) atoms from a microwave discharge through NH3 (ND3) and H2 (D2). Photoluminescence intensity from the GaAs is monitored simultaneously with the FTIR spectra and used as a measure of surface state reduction. At room temperature, H atoms produced from the discharge remove -As-O and C-H contaminants but not Ga2O3. The appearance of As-H bonds and corresponding increase in PL are delayed significantly from plasma initiation, an increase in -O-H concentration, and removal of -As-O bonds. Because the As antisite defects are concentrated at the GaAs-oxide interface, the rates of As-H formation and PL enhancement may be limited by diffusion of H through the oxide and water layer which forms on the surface. We find that the concentration of physisorbed H2O on the GaAs surface increases throughout passivation. There are two sources of water detected on the surface: (i) reduction of As-O bonds and (ii) reaction of H with the quartz reactor walls. Ga2O3 grows on the surface via oxidation of GaAs by the physisorbed water. We surmise that higher H concentration in NH3 plasmas results in faster water accumulation on the surface and trapping of the As-H species subsurface. In H2 plasma, water accumulation on the surface is slower and trapping of As-H is not observed.",
author = "Eray Aydil and Zhou, {Zhen H.} and Gottscho, {Richard A.} and Chabal, {Yves J.}",
year = "1995",
month = "3",
day = "1",
doi = "10.1116/1.588361",
language = "English (US)",
volume = "13",
pages = "258--267",
journal = "Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena",
issn = "1071-1023",
publisher = "AVS Science and Technology Society",
number = "2",

}

TY - JOUR

T1 - Real time in situ monitoring of surfaces during glow discharge processing

T2 - NH3 and H2 plasma passivation of GaAs

AU - Aydil, Eray

AU - Zhou, Zhen H.

AU - Gottscho, Richard A.

AU - Chabal, Yves J.

PY - 1995/3/1

Y1 - 1995/3/1

N2 - Numerous device applications of GaAs are hampered by poor electronic properties of GaAs surfaces and interfaces. Room temperature NH3 and H2 downstream plasma passivation of native oxide contaminated GaAs surfaces is investigated using attenuated-total-reflection (ATR) Fourier-transform-infrared spectroscopy (FTIR) and photoluminescence (PL). Using ATR FTIR concentrations of -As-O, -As-H, H-OH, and C-H bonds are monitored in situ and in real time during exposure of the GaAs surface to H (D) atoms from a microwave discharge through NH3 (ND3) and H2 (D2). Photoluminescence intensity from the GaAs is monitored simultaneously with the FTIR spectra and used as a measure of surface state reduction. At room temperature, H atoms produced from the discharge remove -As-O and C-H contaminants but not Ga2O3. The appearance of As-H bonds and corresponding increase in PL are delayed significantly from plasma initiation, an increase in -O-H concentration, and removal of -As-O bonds. Because the As antisite defects are concentrated at the GaAs-oxide interface, the rates of As-H formation and PL enhancement may be limited by diffusion of H through the oxide and water layer which forms on the surface. We find that the concentration of physisorbed H2O on the GaAs surface increases throughout passivation. There are two sources of water detected on the surface: (i) reduction of As-O bonds and (ii) reaction of H with the quartz reactor walls. Ga2O3 grows on the surface via oxidation of GaAs by the physisorbed water. We surmise that higher H concentration in NH3 plasmas results in faster water accumulation on the surface and trapping of the As-H species subsurface. In H2 plasma, water accumulation on the surface is slower and trapping of As-H is not observed.

AB - Numerous device applications of GaAs are hampered by poor electronic properties of GaAs surfaces and interfaces. Room temperature NH3 and H2 downstream plasma passivation of native oxide contaminated GaAs surfaces is investigated using attenuated-total-reflection (ATR) Fourier-transform-infrared spectroscopy (FTIR) and photoluminescence (PL). Using ATR FTIR concentrations of -As-O, -As-H, H-OH, and C-H bonds are monitored in situ and in real time during exposure of the GaAs surface to H (D) atoms from a microwave discharge through NH3 (ND3) and H2 (D2). Photoluminescence intensity from the GaAs is monitored simultaneously with the FTIR spectra and used as a measure of surface state reduction. At room temperature, H atoms produced from the discharge remove -As-O and C-H contaminants but not Ga2O3. The appearance of As-H bonds and corresponding increase in PL are delayed significantly from plasma initiation, an increase in -O-H concentration, and removal of -As-O bonds. Because the As antisite defects are concentrated at the GaAs-oxide interface, the rates of As-H formation and PL enhancement may be limited by diffusion of H through the oxide and water layer which forms on the surface. We find that the concentration of physisorbed H2O on the GaAs surface increases throughout passivation. There are two sources of water detected on the surface: (i) reduction of As-O bonds and (ii) reaction of H with the quartz reactor walls. Ga2O3 grows on the surface via oxidation of GaAs by the physisorbed water. We surmise that higher H concentration in NH3 plasmas results in faster water accumulation on the surface and trapping of the As-H species subsurface. In H2 plasma, water accumulation on the surface is slower and trapping of As-H is not observed.

UR - http://www.scopus.com/inward/record.url?scp=0029273205&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029273205&partnerID=8YFLogxK

U2 - 10.1116/1.588361

DO - 10.1116/1.588361

M3 - Article

AN - SCOPUS:0029273205

VL - 13

SP - 258

EP - 267

JO - Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena

JF - Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena

SN - 1071-1023

IS - 2

ER -