Quaternionic root systems and subgroups of the Aut (F4)

Mehmet Koca, Muataz Al Barwani, Ramazan Ko̧

Research output: Contribution to journalArticle

Abstract

Cayley-Dickson doubling procedure is used to construct the root systems of some celebrated Lie algebras in terms of the integer elements of the division algebras of real numbers, complex numbers, quaternions, and octonions. Starting with the roots and weights of SU(2) expressed as the real numbers one can construct the root systems of the Lie algebras of SO(4), SP(2)≈SO(5), SO(8), SO(9), F4 and E8 in terms of the discrete elements of the division algebras. The roots themselves display the groups structures besides the octonionic roots of E8 which form a closed octonion algebra. The automorphism group Aut (F4) of the Dynkin diagram of F4 of order 2304, the largest crystallographic group in four-dimensional Euclidean space, is realized as the direct product of two binary octahedral group of quaternions preserving the quaternionic root system of F4. The Weyl groups of many Lie algebras, such as, G2, SO(7), SO(8), SO(9), SU(3)XSU(3), and SP(3)×SU(2) have been constructed as the subgroups of Aut (F4). We have also classified the other non-parabolic subgroups of Aut (F4) which are not Weyl groups. Two subgroups of orders 192 with different conjugacy classes occur as maximal subgroups in the finite subgroups of the Lie group G2 of orders 12096 and 1344 and proves to be useful in their constructions. The triality of SO(8) manifesting itself as the cyclic symmetry of the quaternionic imaginary units e1, e2, e3 is used to show that SO(7) and SO(9) can be embedded, triply symmetric way in SO(8) and F4 in respectively.

Original languageEnglish (US)
Article number043507
JournalJournal of Mathematical Physics
Volume47
Issue number4
DOIs
StatePublished - May 15 2006

Fingerprint

Root System
subgroups
algebra
Subgroup
Octonions
Lie Algebra
Division Algebra
Weyl Group
Roots
Quaternion
real numbers
quaternions
Crystallographic Group
Dynkin Diagram
Discrete Elements
division
Maximal Subgroup
Cayley
Direct Product
Conjugacy class

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Cite this

Quaternionic root systems and subgroups of the Aut (F4). / Koca, Mehmet; Al Barwani, Muataz; Ko̧, Ramazan.

In: Journal of Mathematical Physics, Vol. 47, No. 4, 043507, 15.05.2006.

Research output: Contribution to journalArticle

@article{ab5285f789db4f1cb5d72ce14fa78e8a,
title = "Quaternionic root systems and subgroups of the Aut (F4)",
abstract = "Cayley-Dickson doubling procedure is used to construct the root systems of some celebrated Lie algebras in terms of the integer elements of the division algebras of real numbers, complex numbers, quaternions, and octonions. Starting with the roots and weights of SU(2) expressed as the real numbers one can construct the root systems of the Lie algebras of SO(4), SP(2)≈SO(5), SO(8), SO(9), F4 and E8 in terms of the discrete elements of the division algebras. The roots themselves display the groups structures besides the octonionic roots of E8 which form a closed octonion algebra. The automorphism group Aut (F4) of the Dynkin diagram of F4 of order 2304, the largest crystallographic group in four-dimensional Euclidean space, is realized as the direct product of two binary octahedral group of quaternions preserving the quaternionic root system of F4. The Weyl groups of many Lie algebras, such as, G2, SO(7), SO(8), SO(9), SU(3)XSU(3), and SP(3)×SU(2) have been constructed as the subgroups of Aut (F4). We have also classified the other non-parabolic subgroups of Aut (F4) which are not Weyl groups. Two subgroups of orders 192 with different conjugacy classes occur as maximal subgroups in the finite subgroups of the Lie group G2 of orders 12096 and 1344 and proves to be useful in their constructions. The triality of SO(8) manifesting itself as the cyclic symmetry of the quaternionic imaginary units e1, e2, e3 is used to show that SO(7) and SO(9) can be embedded, triply symmetric way in SO(8) and F4 in respectively.",
author = "Mehmet Koca and {Al Barwani}, Muataz and Ramazan Ko̧",
year = "2006",
month = "5",
day = "15",
doi = "10.1063/1.2190334",
language = "English (US)",
volume = "47",
journal = "Journal of Mathematical Physics",
issn = "0022-2488",
publisher = "American Institute of Physics Publising LLC",
number = "4",

}

TY - JOUR

T1 - Quaternionic root systems and subgroups of the Aut (F4)

AU - Koca, Mehmet

AU - Al Barwani, Muataz

AU - Ko̧, Ramazan

PY - 2006/5/15

Y1 - 2006/5/15

N2 - Cayley-Dickson doubling procedure is used to construct the root systems of some celebrated Lie algebras in terms of the integer elements of the division algebras of real numbers, complex numbers, quaternions, and octonions. Starting with the roots and weights of SU(2) expressed as the real numbers one can construct the root systems of the Lie algebras of SO(4), SP(2)≈SO(5), SO(8), SO(9), F4 and E8 in terms of the discrete elements of the division algebras. The roots themselves display the groups structures besides the octonionic roots of E8 which form a closed octonion algebra. The automorphism group Aut (F4) of the Dynkin diagram of F4 of order 2304, the largest crystallographic group in four-dimensional Euclidean space, is realized as the direct product of two binary octahedral group of quaternions preserving the quaternionic root system of F4. The Weyl groups of many Lie algebras, such as, G2, SO(7), SO(8), SO(9), SU(3)XSU(3), and SP(3)×SU(2) have been constructed as the subgroups of Aut (F4). We have also classified the other non-parabolic subgroups of Aut (F4) which are not Weyl groups. Two subgroups of orders 192 with different conjugacy classes occur as maximal subgroups in the finite subgroups of the Lie group G2 of orders 12096 and 1344 and proves to be useful in their constructions. The triality of SO(8) manifesting itself as the cyclic symmetry of the quaternionic imaginary units e1, e2, e3 is used to show that SO(7) and SO(9) can be embedded, triply symmetric way in SO(8) and F4 in respectively.

AB - Cayley-Dickson doubling procedure is used to construct the root systems of some celebrated Lie algebras in terms of the integer elements of the division algebras of real numbers, complex numbers, quaternions, and octonions. Starting with the roots and weights of SU(2) expressed as the real numbers one can construct the root systems of the Lie algebras of SO(4), SP(2)≈SO(5), SO(8), SO(9), F4 and E8 in terms of the discrete elements of the division algebras. The roots themselves display the groups structures besides the octonionic roots of E8 which form a closed octonion algebra. The automorphism group Aut (F4) of the Dynkin diagram of F4 of order 2304, the largest crystallographic group in four-dimensional Euclidean space, is realized as the direct product of two binary octahedral group of quaternions preserving the quaternionic root system of F4. The Weyl groups of many Lie algebras, such as, G2, SO(7), SO(8), SO(9), SU(3)XSU(3), and SP(3)×SU(2) have been constructed as the subgroups of Aut (F4). We have also classified the other non-parabolic subgroups of Aut (F4) which are not Weyl groups. Two subgroups of orders 192 with different conjugacy classes occur as maximal subgroups in the finite subgroups of the Lie group G2 of orders 12096 and 1344 and proves to be useful in their constructions. The triality of SO(8) manifesting itself as the cyclic symmetry of the quaternionic imaginary units e1, e2, e3 is used to show that SO(7) and SO(9) can be embedded, triply symmetric way in SO(8) and F4 in respectively.

UR - http://www.scopus.com/inward/record.url?scp=33646427187&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646427187&partnerID=8YFLogxK

U2 - 10.1063/1.2190334

DO - 10.1063/1.2190334

M3 - Article

VL - 47

JO - Journal of Mathematical Physics

JF - Journal of Mathematical Physics

SN - 0022-2488

IS - 4

M1 - 043507

ER -