Probing the Physics of Core-Collapse Supernovae and Ultra-Relativistic Outflows using Pulsar Wind Nebulae

Research output: Contribution to journalArticle

Abstract

Core-collapse supernovae, the powerful explosions triggered by the gravitational collapse of massive stars, play an important role in evolution of star-forming galaxies like our Milky Way. Not only do these explosions eject the outer envelope of the progenitor star with extremely high velocities, creating a supernova remnant (SNR), the rotational energy of the resultant neutron star powers an ultra-relativistic outflow called a pulsar wind which creates a pulsar wind nebula (PWN) as it expands into its surroundings. Despite almost a century of study, many fundamental questions remain, including: How is a neutron star formed during a core-collapse supernova? How are particles created in the neutron star magnetosphere? How are particles accelerated to the PeV energies inside PWNe? Answering these questions requires measuring the properties of the progenitor star and pulsar wind for a diverse collection of neutron stars. Currently, this is best done by studying those PWNe inside a SNR, since their evolution is very sensitive to the initial spin period of the neutron star, the mass and initial kinetic energy of the supernova ejecta, and the magnetization and particle spectrum of the pulsar wind - quantities critical for answering the above questions. To this end, we propose to measure these properties for 17 neutron stars whose spin-down inferred dipole surface magnetic field strengths and characteristic ages differ by 1.5 orders of magnitude by fitting the broadband spectral energy distribution (SED) and dynamical properties of their associated PWNe with a model for the dynamical and spectral evolution of a PWN inside SNR. To do so, we will first re-analyze all archival X-ray (e.g., XMM, Chandra, INTEGRAL, NuSTAR) and gamma-ray (e.g., Fermi-LAT Pass 8) data on each PWN to ensure consistent measurements of the volume-integrated properties (e.g., X-ray photon index and unabsorbed flux, GeV spectrum) needed for this analysis. Additionally, we will use a Markoff Chain Monte Carlo (MCMC) algorithm to search the entire parameter space - allowing us to both determine the statistical and systematic errors of the derived quantities and make testable predictions for future observations. The results of this investigation are relevant to many areas of astrophysics. Particle acceleration occurs in many magnetized relativistic outflows, from active galactic nuclei to gamma-ray bursts, and insight into the acceleration mechanism present in PWNe would be directly applicable to these systems. Additionally, our modeling with help us determine if PWNe are the origin of the anomalous population of GeV cosmic ray electrons and positrons often theorized to be the result of decaying dark matter. Lastly, PWNe are expected to be an important class of sources for next-generation observatories like ATHENA, the Square Kilometer Array, and the Cherenkov Telescope Array, and our modeling will provide valuable insight into what can and cannot be discovered using these telescopes. This work directly address NASA's strategic objective to advance understanding of the fundamental physics of the universe by studying the behavior of matter and energy in extreme environments.
Original languageEnglish (US)
JournalNASA Proposal id.16-ADAP16-95
StatePublished - 2016

Fingerprint Dive into the research topics of 'Probing the Physics of Core-Collapse Supernovae and Ultra-Relativistic Outflows using Pulsar Wind Nebulae'. Together they form a unique fingerprint.

  • Cite this