Abstract
Standard particle filtering technique have previously been applied to the problem of fiber tracking by Brun et al. [Brun, A., Bjornemo, M., Kikinis, R., Westin, C.F., 2002. White matter tractography using sequential importance sampling. In: Proceedings of the ISMRM Annual Meeting, p. 1131] and Bjornemo et al. [Bjornemo, M., Brun, A., Kikinis, R., Westin, C.F., 2002. Regularized stochastic white matter tractography using diffusion tensor MRI, In: Proc. MICCAI, pp. 435-442]. However, these previous attempts have not utilised the full power of the technique, and as a result the fiber paths were tracked in a goal directed way. In this paper, we provide an advanced technique by presenting a fast and novel probabilistic method for white matter fiber tracking in diffusion weighted MRI (DWI), which takes advantage of the weighting and resampling mechanism of particle filtering. We formulate fiber tracking using a non-linear state space model which captures both smoothness regularity of the fibers and the uncertainties in the local fiber orientations due to noise and partial volume effects. Global fiber tracking is then posed as a problem of particle filtering. To model the posterior distribution, we classify voxels of the white matter as either prolate or oblate tensors. We then construct the orientation distributions for prolate and oblate tensors separately. Finally, the importance density function for particle filtering is modeled using the von Mises-Fisher distribution on a unit sphere. Fast and efficient sampling is achieved using Ulrich-Wood's simulation algorithm. Given a seed point, the method is able to rapidly locate the globally optimal fiber and also provides a probability map for potential connections. The proposed method is validated and compared to alternative methods both on synthetic data and real-world brain MRI datasets.
Original language | English (US) |
---|---|
Pages (from-to) | 5-18 |
Number of pages | 14 |
Journal | Medical Image Analysis |
Volume | 13 |
Issue number | 1 |
DOIs | |
State | Published - Feb 2009 |
Fingerprint
Keywords
- Diffusion tensor MRI
- Particle filtering
- Probabilistic fiber tracking
- Tractography
- von Mises-Fisher sampling
ASJC Scopus subject areas
- Computer Graphics and Computer-Aided Design
- Computer Vision and Pattern Recognition
- Radiology Nuclear Medicine and imaging
- Health Informatics
- Radiological and Ultrasound Technology
Cite this
Probabilistic white matter fiber tracking using particle filtering and von Mises-Fisher sampling. / Zhang, Fan; Hancock, Edwin R.; Goodlett, Casey; Gerig, Guido.
In: Medical Image Analysis, Vol. 13, No. 1, 02.2009, p. 5-18.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Probabilistic white matter fiber tracking using particle filtering and von Mises-Fisher sampling
AU - Zhang, Fan
AU - Hancock, Edwin R.
AU - Goodlett, Casey
AU - Gerig, Guido
PY - 2009/2
Y1 - 2009/2
N2 - Standard particle filtering technique have previously been applied to the problem of fiber tracking by Brun et al. [Brun, A., Bjornemo, M., Kikinis, R., Westin, C.F., 2002. White matter tractography using sequential importance sampling. In: Proceedings of the ISMRM Annual Meeting, p. 1131] and Bjornemo et al. [Bjornemo, M., Brun, A., Kikinis, R., Westin, C.F., 2002. Regularized stochastic white matter tractography using diffusion tensor MRI, In: Proc. MICCAI, pp. 435-442]. However, these previous attempts have not utilised the full power of the technique, and as a result the fiber paths were tracked in a goal directed way. In this paper, we provide an advanced technique by presenting a fast and novel probabilistic method for white matter fiber tracking in diffusion weighted MRI (DWI), which takes advantage of the weighting and resampling mechanism of particle filtering. We formulate fiber tracking using a non-linear state space model which captures both smoothness regularity of the fibers and the uncertainties in the local fiber orientations due to noise and partial volume effects. Global fiber tracking is then posed as a problem of particle filtering. To model the posterior distribution, we classify voxels of the white matter as either prolate or oblate tensors. We then construct the orientation distributions for prolate and oblate tensors separately. Finally, the importance density function for particle filtering is modeled using the von Mises-Fisher distribution on a unit sphere. Fast and efficient sampling is achieved using Ulrich-Wood's simulation algorithm. Given a seed point, the method is able to rapidly locate the globally optimal fiber and also provides a probability map for potential connections. The proposed method is validated and compared to alternative methods both on synthetic data and real-world brain MRI datasets.
AB - Standard particle filtering technique have previously been applied to the problem of fiber tracking by Brun et al. [Brun, A., Bjornemo, M., Kikinis, R., Westin, C.F., 2002. White matter tractography using sequential importance sampling. In: Proceedings of the ISMRM Annual Meeting, p. 1131] and Bjornemo et al. [Bjornemo, M., Brun, A., Kikinis, R., Westin, C.F., 2002. Regularized stochastic white matter tractography using diffusion tensor MRI, In: Proc. MICCAI, pp. 435-442]. However, these previous attempts have not utilised the full power of the technique, and as a result the fiber paths were tracked in a goal directed way. In this paper, we provide an advanced technique by presenting a fast and novel probabilistic method for white matter fiber tracking in diffusion weighted MRI (DWI), which takes advantage of the weighting and resampling mechanism of particle filtering. We formulate fiber tracking using a non-linear state space model which captures both smoothness regularity of the fibers and the uncertainties in the local fiber orientations due to noise and partial volume effects. Global fiber tracking is then posed as a problem of particle filtering. To model the posterior distribution, we classify voxels of the white matter as either prolate or oblate tensors. We then construct the orientation distributions for prolate and oblate tensors separately. Finally, the importance density function for particle filtering is modeled using the von Mises-Fisher distribution on a unit sphere. Fast and efficient sampling is achieved using Ulrich-Wood's simulation algorithm. Given a seed point, the method is able to rapidly locate the globally optimal fiber and also provides a probability map for potential connections. The proposed method is validated and compared to alternative methods both on synthetic data and real-world brain MRI datasets.
KW - Diffusion tensor MRI
KW - Particle filtering
KW - Probabilistic fiber tracking
KW - Tractography
KW - von Mises-Fisher sampling
UR - http://www.scopus.com/inward/record.url?scp=57049159775&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=57049159775&partnerID=8YFLogxK
U2 - 10.1016/j.media.2008.05.001
DO - 10.1016/j.media.2008.05.001
M3 - Article
C2 - 18602332
AN - SCOPUS:57049159775
VL - 13
SP - 5
EP - 18
JO - Medical Image Analysis
JF - Medical Image Analysis
SN - 1361-8415
IS - 1
ER -