Predicting taxi demand at high spatial resolution: Approaching the limit of predictability

Kai Zhao, Denis Khryashchev, Juliana Freire, Claudio Silva, Huy Vo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In big cities, taxi service is imbalanced. In some areas, passengers wait too long for a taxi, while in others, many taxis roam without passengers. Knowledge of where a taxi will become available can help us solve the taxi demand imbalance problem. In this paper, we employ a holistic approach to predict taxi demand at high spatial resolution. We showcase our techniques using two real-world data sets, yellow cabs and Uber trips in New York City, and perform an evaluation over 9,940 building blocks in Manhattan. Our approach consists of two key steps. First, we use entropy and the temporal correlation of human mobility to measure the demand uncertainty at the building block level. Second, to identify which predictive algorithm can approach the theoretical maximum predictability, we implement and compare three predictors: the Markov predictor (a probability-based predictive algorithm), the Lempel-Ziv-Welch predictor (a sequence-based predictive algorithm), and the Neural Network predictor (a predictive algorithm that uses machine learning). The results show that predictability varies by building block and, on average, the theoretical maximum predictability can be as high as 83%. The performance of the predictors also vary: the Neural Network predictor provides better accuracy for blocks with low predictability, and the Markov predictor provides better accuracy for blocks with high predictability. In blocks with high maximum predictability, the Markov predictor is able to predict the taxi demand with an 89% accuracy, 11% better than the Neural Network predictor, while requiring only 0.03% computation time. These findings indicate that the maximum predictability can be a good metric for selecting prediction algorithms.

Original languageEnglish (US)
Title of host publicationProceedings - 2016 IEEE International Conference on Big Data, Big Data 2016
EditorsRonay Ak, George Karypis, Yinglong Xia, Xiaohua Tony Hu, Philip S. Yu, James Joshi, Lyle Ungar, Ling Liu, Aki-Hiro Sato, Toyotaro Suzumura, Sudarsan Rachuri, Rama Govindaraju, Weijia Xu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages833-842
Number of pages10
ISBN (Electronic)9781467390040
DOIs
StatePublished - Jan 1 2016
Event4th IEEE International Conference on Big Data, Big Data 2016 - Washington, United States
Duration: Dec 5 2016Dec 8 2016

Publication series

NameProceedings - 2016 IEEE International Conference on Big Data, Big Data 2016

Other

Other4th IEEE International Conference on Big Data, Big Data 2016
CountryUnited States
CityWashington
Period12/5/1612/8/16

Keywords

  • human mobility
  • limit of predictability
  • predictive algorithm
  • spatiotemporal data
  • taxi demand prediction

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Hardware and Architecture

Fingerprint Dive into the research topics of 'Predicting taxi demand at high spatial resolution: Approaching the limit of predictability'. Together they form a unique fingerprint.

  • Cite this

    Zhao, K., Khryashchev, D., Freire, J., Silva, C., & Vo, H. (2016). Predicting taxi demand at high spatial resolution: Approaching the limit of predictability. In R. Ak, G. Karypis, Y. Xia, X. T. Hu, P. S. Yu, J. Joshi, L. Ungar, L. Liu, A-H. Sato, T. Suzumura, S. Rachuri, R. Govindaraju, & W. Xu (Eds.), Proceedings - 2016 IEEE International Conference on Big Data, Big Data 2016 (pp. 833-842). [7840676] (Proceedings - 2016 IEEE International Conference on Big Data, Big Data 2016). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/BigData.2016.7840676