Possible effects of magnetic fields on the quenching of triplet excited states of polynuclear hydrocarbons by oxygen

Nicholas Geacintov, Charles E. Swenberg

Research output: Contribution to journalArticle

Abstract

A theory of the magnetic field effect on the rate constant 7 of the quenching of aromatic hydrocarbon triplets by molecular oxygen is developed. Based on theoretical considerations of Kawaoka, Khan, and Kearns and on experimental evidence obtained by other workers, it is assumed that the final state of the quenching reaction gives rise to oxygen in a singlet excited state. The conclusions should, however, be applicable to other cases in which the initial state involves two triplets and the final state two singlets. The theory takes the intramolecular spin-spin interaction and the charge-transfer interaction in the bimolecular intermediate complex state into account. The distribution of singlet character among the nine possible collision complex states is considered. The theory predicts that as long as the splitting among the singlet, quintet and triplet like pair states due to charge-transfer interaction is negligible compared to the spin-spin interaction, a negative effect on y in a quantizing magnetic field is expected. If the charge-transfer induced splitting ΔETS between singlet and triplet like pair states and ΔEQS between quintets and singlets is large compared to the zero-field spin-spin interaction and also the Zeeman energy, no effect of magnetic field on 7 will be observed. Both positive and negative field effects on 7 are predicted if ΔErs and ΔEqs are of the order of the Zeeman energy or if ΔErs~0, but Δqa is larger than the spin-spin interaction. The magnetic field dependence of 7 may then display minima and maxima, which may be very broad if ΔEQS and ΔErs are a function of the collision complex geometry which may assume many configurations. Experiments on partially quenched phosphorescent samples of chrysene, a, h-dibenzanthracene and coronene adsorbed on a polystyrene matrix were carried out at a field of 145 kG. Within the experimental error of l%-2%, no effect of magnetic field on 7 was detected. The experimentally observed null effect is interpreted assuming either (1) that the ratio of the transition rate to final singlet states to the rate of dissociation of the collision complex is small, or (2) that the effect of charge transfer mixing in the complex is significant. It is tentatively concluded that the results are better explained in terms of the latter hypothesis. It is estimated that the energy spread due to charge-transfer interaction between singlet and triplet-like complex states is greater than 30 cm-1.

Original languageEnglish (US)
Pages (from-to)389-398
Number of pages10
JournalThe Journal of chemical physics
Volume57
Issue number1
StatePublished - 1972

Fingerprint

Hydrocarbons
Excited states
Charge transfer
Quenching
hydrocarbons
quenching
Magnetic fields
Oxygen
oxygen
magnetic fields
charge transfer
excitation
interactions
Magnetic field effects
Aromatic Hydrocarbons
Molecular oxygen
collisions
Polystyrenes
Rate constants
Geometry

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

Possible effects of magnetic fields on the quenching of triplet excited states of polynuclear hydrocarbons by oxygen. / Geacintov, Nicholas; Swenberg, Charles E.

In: The Journal of chemical physics, Vol. 57, No. 1, 1972, p. 389-398.

Research output: Contribution to journalArticle

@article{c486a6195dd94b5fbd8aebbbe4bb6d8c,
title = "Possible effects of magnetic fields on the quenching of triplet excited states of polynuclear hydrocarbons by oxygen",
abstract = "A theory of the magnetic field effect on the rate constant 7 of the quenching of aromatic hydrocarbon triplets by molecular oxygen is developed. Based on theoretical considerations of Kawaoka, Khan, and Kearns and on experimental evidence obtained by other workers, it is assumed that the final state of the quenching reaction gives rise to oxygen in a singlet excited state. The conclusions should, however, be applicable to other cases in which the initial state involves two triplets and the final state two singlets. The theory takes the intramolecular spin-spin interaction and the charge-transfer interaction in the bimolecular intermediate complex state into account. The distribution of singlet character among the nine possible collision complex states is considered. The theory predicts that as long as the splitting among the singlet, quintet and triplet like pair states due to charge-transfer interaction is negligible compared to the spin-spin interaction, a negative effect on y in a quantizing magnetic field is expected. If the charge-transfer induced splitting ΔETS between singlet and triplet like pair states and ΔEQS between quintets and singlets is large compared to the zero-field spin-spin interaction and also the Zeeman energy, no effect of magnetic field on 7 will be observed. Both positive and negative field effects on 7 are predicted if ΔErs and ΔEqs are of the order of the Zeeman energy or if ΔErs~0, but Δqa is larger than the spin-spin interaction. The magnetic field dependence of 7 may then display minima and maxima, which may be very broad if ΔEQS and ΔErs are a function of the collision complex geometry which may assume many configurations. Experiments on partially quenched phosphorescent samples of chrysene, a, h-dibenzanthracene and coronene adsorbed on a polystyrene matrix were carried out at a field of 145 kG. Within the experimental error of l{\%}-2{\%}, no effect of magnetic field on 7 was detected. The experimentally observed null effect is interpreted assuming either (1) that the ratio of the transition rate to final singlet states to the rate of dissociation of the collision complex is small, or (2) that the effect of charge transfer mixing in the complex is significant. It is tentatively concluded that the results are better explained in terms of the latter hypothesis. It is estimated that the energy spread due to charge-transfer interaction between singlet and triplet-like complex states is greater than 30 cm-1.",
author = "Nicholas Geacintov and Swenberg, {Charles E.}",
year = "1972",
language = "English (US)",
volume = "57",
pages = "389--398",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "1",

}

TY - JOUR

T1 - Possible effects of magnetic fields on the quenching of triplet excited states of polynuclear hydrocarbons by oxygen

AU - Geacintov, Nicholas

AU - Swenberg, Charles E.

PY - 1972

Y1 - 1972

N2 - A theory of the magnetic field effect on the rate constant 7 of the quenching of aromatic hydrocarbon triplets by molecular oxygen is developed. Based on theoretical considerations of Kawaoka, Khan, and Kearns and on experimental evidence obtained by other workers, it is assumed that the final state of the quenching reaction gives rise to oxygen in a singlet excited state. The conclusions should, however, be applicable to other cases in which the initial state involves two triplets and the final state two singlets. The theory takes the intramolecular spin-spin interaction and the charge-transfer interaction in the bimolecular intermediate complex state into account. The distribution of singlet character among the nine possible collision complex states is considered. The theory predicts that as long as the splitting among the singlet, quintet and triplet like pair states due to charge-transfer interaction is negligible compared to the spin-spin interaction, a negative effect on y in a quantizing magnetic field is expected. If the charge-transfer induced splitting ΔETS between singlet and triplet like pair states and ΔEQS between quintets and singlets is large compared to the zero-field spin-spin interaction and also the Zeeman energy, no effect of magnetic field on 7 will be observed. Both positive and negative field effects on 7 are predicted if ΔErs and ΔEqs are of the order of the Zeeman energy or if ΔErs~0, but Δqa is larger than the spin-spin interaction. The magnetic field dependence of 7 may then display minima and maxima, which may be very broad if ΔEQS and ΔErs are a function of the collision complex geometry which may assume many configurations. Experiments on partially quenched phosphorescent samples of chrysene, a, h-dibenzanthracene and coronene adsorbed on a polystyrene matrix were carried out at a field of 145 kG. Within the experimental error of l%-2%, no effect of magnetic field on 7 was detected. The experimentally observed null effect is interpreted assuming either (1) that the ratio of the transition rate to final singlet states to the rate of dissociation of the collision complex is small, or (2) that the effect of charge transfer mixing in the complex is significant. It is tentatively concluded that the results are better explained in terms of the latter hypothesis. It is estimated that the energy spread due to charge-transfer interaction between singlet and triplet-like complex states is greater than 30 cm-1.

AB - A theory of the magnetic field effect on the rate constant 7 of the quenching of aromatic hydrocarbon triplets by molecular oxygen is developed. Based on theoretical considerations of Kawaoka, Khan, and Kearns and on experimental evidence obtained by other workers, it is assumed that the final state of the quenching reaction gives rise to oxygen in a singlet excited state. The conclusions should, however, be applicable to other cases in which the initial state involves two triplets and the final state two singlets. The theory takes the intramolecular spin-spin interaction and the charge-transfer interaction in the bimolecular intermediate complex state into account. The distribution of singlet character among the nine possible collision complex states is considered. The theory predicts that as long as the splitting among the singlet, quintet and triplet like pair states due to charge-transfer interaction is negligible compared to the spin-spin interaction, a negative effect on y in a quantizing magnetic field is expected. If the charge-transfer induced splitting ΔETS between singlet and triplet like pair states and ΔEQS between quintets and singlets is large compared to the zero-field spin-spin interaction and also the Zeeman energy, no effect of magnetic field on 7 will be observed. Both positive and negative field effects on 7 are predicted if ΔErs and ΔEqs are of the order of the Zeeman energy or if ΔErs~0, but Δqa is larger than the spin-spin interaction. The magnetic field dependence of 7 may then display minima and maxima, which may be very broad if ΔEQS and ΔErs are a function of the collision complex geometry which may assume many configurations. Experiments on partially quenched phosphorescent samples of chrysene, a, h-dibenzanthracene and coronene adsorbed on a polystyrene matrix were carried out at a field of 145 kG. Within the experimental error of l%-2%, no effect of magnetic field on 7 was detected. The experimentally observed null effect is interpreted assuming either (1) that the ratio of the transition rate to final singlet states to the rate of dissociation of the collision complex is small, or (2) that the effect of charge transfer mixing in the complex is significant. It is tentatively concluded that the results are better explained in terms of the latter hypothesis. It is estimated that the energy spread due to charge-transfer interaction between singlet and triplet-like complex states is greater than 30 cm-1.

UR - http://www.scopus.com/inward/record.url?scp=36849105806&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=36849105806&partnerID=8YFLogxK

M3 - Article

VL - 57

SP - 389

EP - 398

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 1

ER -