Polη, Polζ and Rev1 together are required for G to T transversion mutations induced by the (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts in yeast cells

Bo Zhao, Jillian Wang, Nicholas Geacintov, Zhigang Wang

Research output: Contribution to journalArticle

Abstract

Benzo[a]pyrene is an important environmental mutagen and carcinogen. Its metabolism in cells yields the mutagenic, key ultimate carcinogen 7R,8S,9S,10R-anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide, (+)-anti-BPDE, which reacts via its 10-position with N2-dG in DNA to form the adduct (+)-anti-BPDE-N2-dG. To gain molecular insights into BPDE-induced mutagenesis, we examined in vivo translesion synthesis and mutagenesis in yeast cells of a site-specific 10S (+)-trans-anti-BPDE-N2-dG adduct and the stereoisomeric 10R (-)-trans-anti-BPDE-N2-dG adduct. In wild-type cells, bypass products consisted of 76% C, 14% A and 7% G insertions opposite (+)-trans-anti-BPDE-N2-dG; and 89% C, 4% A and 4% G insertions opposite (-)-trans-anti-BPDE-N2-dG. Translesion synthesis was reduced by ∼26-37% in rad30 mutant cells lacking Polη but more deficient in rev1 and almost totally deficient in rev3 (lacking Polζ) mutants. C insertion opposite the lesion was reduced by ∼24-33% in rad30 mutant cells, further reduced in rev1 mutant, and mostly disappeared in the rev3 mutant strain. The insertion of A was largely abolished in cells lacking either Polη, Polζ or Rev1. The insertion of G was not detected in either rev1 or rev3 mutant cells. The rad30 rev3 double mutant exhibited a similar phenotype as the single rev3 mutant with respect to translesion synthesis and mutagenesis. These results show that while the Polζ pathway is generally required for translesion synthesis and mutagenesis of the (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts, Polη, Polζ and Rev1 together are required for G→T transversion mutations, a major type of mutagenesis induced by these lesions. Based on biochemical and genetic results, we present mechanistic models of translesion synthesis of these two DNA adducts, involving both the one-polymerase one-step and two-polymerase two-step models.

Original languageEnglish (US)
Pages (from-to)417-425
Number of pages9
JournalNucleic Acids Research
Volume34
Issue number2
DOIs
StatePublished - Feb 2006

Fingerprint

DNA Adducts
Yeasts
Mutagenesis
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide
Mutation
Environmental Carcinogens
Benzo(a)pyrene
Mutagens
benzo(a)pyrene 7,8-diol-9,10-epoxide-N2-deoxyguanosine
Carcinogens
Molecular Biology
Phenotype
DNA

ASJC Scopus subject areas

  • Genetics

Cite this

Polη, Polζ and Rev1 together are required for G to T transversion mutations induced by the (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts in yeast cells. / Zhao, Bo; Wang, Jillian; Geacintov, Nicholas; Wang, Zhigang.

In: Nucleic Acids Research, Vol. 34, No. 2, 02.2006, p. 417-425.

Research output: Contribution to journalArticle

@article{45048248fa5b4dbf9764d7bbd8ab427c,
title = "Polη, Polζ and Rev1 together are required for G to T transversion mutations induced by the (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts in yeast cells",
abstract = "Benzo[a]pyrene is an important environmental mutagen and carcinogen. Its metabolism in cells yields the mutagenic, key ultimate carcinogen 7R,8S,9S,10R-anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide, (+)-anti-BPDE, which reacts via its 10-position with N2-dG in DNA to form the adduct (+)-anti-BPDE-N2-dG. To gain molecular insights into BPDE-induced mutagenesis, we examined in vivo translesion synthesis and mutagenesis in yeast cells of a site-specific 10S (+)-trans-anti-BPDE-N2-dG adduct and the stereoisomeric 10R (-)-trans-anti-BPDE-N2-dG adduct. In wild-type cells, bypass products consisted of 76{\%} C, 14{\%} A and 7{\%} G insertions opposite (+)-trans-anti-BPDE-N2-dG; and 89{\%} C, 4{\%} A and 4{\%} G insertions opposite (-)-trans-anti-BPDE-N2-dG. Translesion synthesis was reduced by ∼26-37{\%} in rad30 mutant cells lacking Polη but more deficient in rev1 and almost totally deficient in rev3 (lacking Polζ) mutants. C insertion opposite the lesion was reduced by ∼24-33{\%} in rad30 mutant cells, further reduced in rev1 mutant, and mostly disappeared in the rev3 mutant strain. The insertion of A was largely abolished in cells lacking either Polη, Polζ or Rev1. The insertion of G was not detected in either rev1 or rev3 mutant cells. The rad30 rev3 double mutant exhibited a similar phenotype as the single rev3 mutant with respect to translesion synthesis and mutagenesis. These results show that while the Polζ pathway is generally required for translesion synthesis and mutagenesis of the (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts, Polη, Polζ and Rev1 together are required for G→T transversion mutations, a major type of mutagenesis induced by these lesions. Based on biochemical and genetic results, we present mechanistic models of translesion synthesis of these two DNA adducts, involving both the one-polymerase one-step and two-polymerase two-step models.",
author = "Bo Zhao and Jillian Wang and Nicholas Geacintov and Zhigang Wang",
year = "2006",
month = "2",
doi = "10.1093/nar/gkj446",
language = "English (US)",
volume = "34",
pages = "417--425",
journal = "Nucleic Acids Research",
issn = "0305-1048",
publisher = "Oxford University Press",
number = "2",

}

TY - JOUR

T1 - Polη, Polζ and Rev1 together are required for G to T transversion mutations induced by the (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts in yeast cells

AU - Zhao, Bo

AU - Wang, Jillian

AU - Geacintov, Nicholas

AU - Wang, Zhigang

PY - 2006/2

Y1 - 2006/2

N2 - Benzo[a]pyrene is an important environmental mutagen and carcinogen. Its metabolism in cells yields the mutagenic, key ultimate carcinogen 7R,8S,9S,10R-anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide, (+)-anti-BPDE, which reacts via its 10-position with N2-dG in DNA to form the adduct (+)-anti-BPDE-N2-dG. To gain molecular insights into BPDE-induced mutagenesis, we examined in vivo translesion synthesis and mutagenesis in yeast cells of a site-specific 10S (+)-trans-anti-BPDE-N2-dG adduct and the stereoisomeric 10R (-)-trans-anti-BPDE-N2-dG adduct. In wild-type cells, bypass products consisted of 76% C, 14% A and 7% G insertions opposite (+)-trans-anti-BPDE-N2-dG; and 89% C, 4% A and 4% G insertions opposite (-)-trans-anti-BPDE-N2-dG. Translesion synthesis was reduced by ∼26-37% in rad30 mutant cells lacking Polη but more deficient in rev1 and almost totally deficient in rev3 (lacking Polζ) mutants. C insertion opposite the lesion was reduced by ∼24-33% in rad30 mutant cells, further reduced in rev1 mutant, and mostly disappeared in the rev3 mutant strain. The insertion of A was largely abolished in cells lacking either Polη, Polζ or Rev1. The insertion of G was not detected in either rev1 or rev3 mutant cells. The rad30 rev3 double mutant exhibited a similar phenotype as the single rev3 mutant with respect to translesion synthesis and mutagenesis. These results show that while the Polζ pathway is generally required for translesion synthesis and mutagenesis of the (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts, Polη, Polζ and Rev1 together are required for G→T transversion mutations, a major type of mutagenesis induced by these lesions. Based on biochemical and genetic results, we present mechanistic models of translesion synthesis of these two DNA adducts, involving both the one-polymerase one-step and two-polymerase two-step models.

AB - Benzo[a]pyrene is an important environmental mutagen and carcinogen. Its metabolism in cells yields the mutagenic, key ultimate carcinogen 7R,8S,9S,10R-anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide, (+)-anti-BPDE, which reacts via its 10-position with N2-dG in DNA to form the adduct (+)-anti-BPDE-N2-dG. To gain molecular insights into BPDE-induced mutagenesis, we examined in vivo translesion synthesis and mutagenesis in yeast cells of a site-specific 10S (+)-trans-anti-BPDE-N2-dG adduct and the stereoisomeric 10R (-)-trans-anti-BPDE-N2-dG adduct. In wild-type cells, bypass products consisted of 76% C, 14% A and 7% G insertions opposite (+)-trans-anti-BPDE-N2-dG; and 89% C, 4% A and 4% G insertions opposite (-)-trans-anti-BPDE-N2-dG. Translesion synthesis was reduced by ∼26-37% in rad30 mutant cells lacking Polη but more deficient in rev1 and almost totally deficient in rev3 (lacking Polζ) mutants. C insertion opposite the lesion was reduced by ∼24-33% in rad30 mutant cells, further reduced in rev1 mutant, and mostly disappeared in the rev3 mutant strain. The insertion of A was largely abolished in cells lacking either Polη, Polζ or Rev1. The insertion of G was not detected in either rev1 or rev3 mutant cells. The rad30 rev3 double mutant exhibited a similar phenotype as the single rev3 mutant with respect to translesion synthesis and mutagenesis. These results show that while the Polζ pathway is generally required for translesion synthesis and mutagenesis of the (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts, Polη, Polζ and Rev1 together are required for G→T transversion mutations, a major type of mutagenesis induced by these lesions. Based on biochemical and genetic results, we present mechanistic models of translesion synthesis of these two DNA adducts, involving both the one-polymerase one-step and two-polymerase two-step models.

UR - http://www.scopus.com/inward/record.url?scp=32644435469&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=32644435469&partnerID=8YFLogxK

U2 - 10.1093/nar/gkj446

DO - 10.1093/nar/gkj446

M3 - Article

VL - 34

SP - 417

EP - 425

JO - Nucleic Acids Research

JF - Nucleic Acids Research

SN - 0305-1048

IS - 2

ER -