Physics reach of the XENON1T dark matter experiment.

E. Aprile, J. Aalbers, F. Agostini, M. Alfonsi, F. D. Amaro, M. Anthony, L. Arazi, Francesco Arneodo, C. Balan, P. Barrow, L. Baudis, B. Bauermeister, T. Berger, P. Breur, A. Breskin, A. Brown, E. Brown, S. Bruenner, G. Bruno, R. BudnikL. Bütikofer, J. M.R. Cardoso, M. Cervantes, D. Cichon, D. Coderre, A. P. Colijn, J. Conrad, H. Contreras, J. P. Cussonneau, M. P. Decowski, P. De Perio, P. Di Gangi, A. Di Giovanni, E. Duchovni, S. Fattori, A. D. Ferella, A. Fieguth, D. Franco, W. Fulgione, M. Galloway, M. Garbini, C. Geis, L. W. Goetzke, Z. Greene, C. Grignon, E. Gross, W. Hampel, C. Hasterok, R. Itay, F. Kaether, B. Kaminsky, G. Kessler, A. Kish, H. Landsman, R. F. Lang, D. Lellouch, L. Levinson, M. Le Calloch, C. Levy, S. Lindemann, M. Lindner, J. A.M. Lopes, A. Lyashenko, S. Macmullin, A. Manfredini, T. Marrodán Undagoitia, J. Masbou, F. V. Massoli, D. Mayani, A. J.Melgarejo Fernandez, Y. Meng, M. Messina, K. Micheneau, B. Miguez, A. Molinario, M. Murra, J. Naganoma, U. Oberlack, S. E.A. Orrigo, P. Pakarha, B. Pelssers, R. Persiani, F. Piastra, J. Pienaar, G. Plante, N. Priel, L. Rauch, S. Reichard, C. Reuter, A. Rizzo, S. Rosendahl, N. Rupp, J. M.F.Dos Santos, G. Sartorelli, M. Scheibelhut, S. Schindler, J. Schreiner, M. Schumann, L. Scotto Lavina, M. Selvi, P. Shagin, H. Simgen, A. Stein, D. Thers, A. Tiseni, G. Trinchero, C. Tunnell, M. Von Sivers, R. Wall, H. Wang, M. Weber, Y. Wei, C. Weinheimer, J. Wulf, Y. Zhang

Research output: Contribution to journalArticle

Abstract

The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80 ± 0.15) · 10-4 (kg·day·keV)-1, mainly due to the decay of 222Rn daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 ± 0.1) (t·y)-1 from radiogenic neutrons, (1.8 ± 0.3) · 10-2 (t·y)-1 from coherent scattering of neutrinos, and less than 0.01 (t·y)-1 from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency eff, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 t fiducial volume, the sensitivity reaches a minimum cross section of 1.6 · 10-47 cm2 at mχ = 50 GeV/c2.

Original languageEnglish (US)
Article number027
JournalJournal of Cosmology and Astroparticle Physics
Volume2016
Issue number4
DOIs
StatePublished - Apr 14 2016

Fingerprint

dark matter
physics
electronics
weakly interacting massive particles
scintillation
sensitivity
neutrons
likelihood ratio
coherent scattering
cross sections
Italy
xenon
electron emission
energy
muons
neutrinos
ionization
detectors
photons
decay

Keywords

  • dark matter experiments
  • dark matter simulations

ASJC Scopus subject areas

  • Astronomy and Astrophysics

Cite this

Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Amaro, F. D., Anthony, M., ... Zhang, Y. (2016). Physics reach of the XENON1T dark matter experiment. Journal of Cosmology and Astroparticle Physics, 2016(4), [027]. https://doi.org/10.1088/1475-7516/2016/04/027

Physics reach of the XENON1T dark matter experiment. / Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arazi, L.; Arneodo, Francesco; Balan, C.; Barrow, P.; Baudis, L.; Bauermeister, B.; Berger, T.; Breur, P.; Breskin, A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Cardoso, J. M.R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Contreras, H.; Cussonneau, J. P.; Decowski, M. P.; De Perio, P.; Gangi, P. Di; Giovanni, A. Di; Duchovni, E.; Fattori, S.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Galloway, M.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Gross, E.; Hampel, W.; Hasterok, C.; Itay, R.; Kaether, F.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Calloch, M. Le; Levy, C.; Lindemann, S.; Lindner, M.; Lopes, J. A.M.; Lyashenko, A.; Macmullin, S.; Manfredini, A.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Mayani, D.; Fernandez, A. J.Melgarejo; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Oberlack, U.; Orrigo, S. E.A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Santos, J. M.F.Dos; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Simgen, H.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Sivers, M. Von; Wall, R.; Wang, H.; Weber, M.; Wei, Y.; Weinheimer, C.; Wulf, J.; Zhang, Y.

In: Journal of Cosmology and Astroparticle Physics, Vol. 2016, No. 4, 027, 14.04.2016.

Research output: Contribution to journalArticle

Aprile, E, Aalbers, J, Agostini, F, Alfonsi, M, Amaro, FD, Anthony, M, Arazi, L, Arneodo, F, Balan, C, Barrow, P, Baudis, L, Bauermeister, B, Berger, T, Breur, P, Breskin, A, Brown, A, Brown, E, Bruenner, S, Bruno, G, Budnik, R, Bütikofer, L, Cardoso, JMR, Cervantes, M, Cichon, D, Coderre, D, Colijn, AP, Conrad, J, Contreras, H, Cussonneau, JP, Decowski, MP, De Perio, P, Gangi, PD, Giovanni, AD, Duchovni, E, Fattori, S, Ferella, AD, Fieguth, A, Franco, D, Fulgione, W, Galloway, M, Garbini, M, Geis, C, Goetzke, LW, Greene, Z, Grignon, C, Gross, E, Hampel, W, Hasterok, C, Itay, R, Kaether, F, Kaminsky, B, Kessler, G, Kish, A, Landsman, H, Lang, RF, Lellouch, D, Levinson, L, Calloch, ML, Levy, C, Lindemann, S, Lindner, M, Lopes, JAM, Lyashenko, A, Macmullin, S, Manfredini, A, Undagoitia, TM, Masbou, J, Massoli, FV, Mayani, D, Fernandez, AJM, Meng, Y, Messina, M, Micheneau, K, Miguez, B, Molinario, A, Murra, M, Naganoma, J, Oberlack, U, Orrigo, SEA, Pakarha, P, Pelssers, B, Persiani, R, Piastra, F, Pienaar, J, Plante, G, Priel, N, Rauch, L, Reichard, S, Reuter, C, Rizzo, A, Rosendahl, S, Rupp, N, Santos, JMFD, Sartorelli, G, Scheibelhut, M, Schindler, S, Schreiner, J, Schumann, M, Lavina, LS, Selvi, M, Shagin, P, Simgen, H, Stein, A, Thers, D, Tiseni, A, Trinchero, G, Tunnell, C, Sivers, MV, Wall, R, Wang, H, Weber, M, Wei, Y, Weinheimer, C, Wulf, J & Zhang, Y 2016, 'Physics reach of the XENON1T dark matter experiment.', Journal of Cosmology and Astroparticle Physics, vol. 2016, no. 4, 027. https://doi.org/10.1088/1475-7516/2016/04/027
Aprile E, Aalbers J, Agostini F, Alfonsi M, Amaro FD, Anthony M et al. Physics reach of the XENON1T dark matter experiment. Journal of Cosmology and Astroparticle Physics. 2016 Apr 14;2016(4). 027. https://doi.org/10.1088/1475-7516/2016/04/027
Aprile, E. ; Aalbers, J. ; Agostini, F. ; Alfonsi, M. ; Amaro, F. D. ; Anthony, M. ; Arazi, L. ; Arneodo, Francesco ; Balan, C. ; Barrow, P. ; Baudis, L. ; Bauermeister, B. ; Berger, T. ; Breur, P. ; Breskin, A. ; Brown, A. ; Brown, E. ; Bruenner, S. ; Bruno, G. ; Budnik, R. ; Bütikofer, L. ; Cardoso, J. M.R. ; Cervantes, M. ; Cichon, D. ; Coderre, D. ; Colijn, A. P. ; Conrad, J. ; Contreras, H. ; Cussonneau, J. P. ; Decowski, M. P. ; De Perio, P. ; Gangi, P. Di ; Giovanni, A. Di ; Duchovni, E. ; Fattori, S. ; Ferella, A. D. ; Fieguth, A. ; Franco, D. ; Fulgione, W. ; Galloway, M. ; Garbini, M. ; Geis, C. ; Goetzke, L. W. ; Greene, Z. ; Grignon, C. ; Gross, E. ; Hampel, W. ; Hasterok, C. ; Itay, R. ; Kaether, F. ; Kaminsky, B. ; Kessler, G. ; Kish, A. ; Landsman, H. ; Lang, R. F. ; Lellouch, D. ; Levinson, L. ; Calloch, M. Le ; Levy, C. ; Lindemann, S. ; Lindner, M. ; Lopes, J. A.M. ; Lyashenko, A. ; Macmullin, S. ; Manfredini, A. ; Undagoitia, T. Marrodán ; Masbou, J. ; Massoli, F. V. ; Mayani, D. ; Fernandez, A. J.Melgarejo ; Meng, Y. ; Messina, M. ; Micheneau, K. ; Miguez, B. ; Molinario, A. ; Murra, M. ; Naganoma, J. ; Oberlack, U. ; Orrigo, S. E.A. ; Pakarha, P. ; Pelssers, B. ; Persiani, R. ; Piastra, F. ; Pienaar, J. ; Plante, G. ; Priel, N. ; Rauch, L. ; Reichard, S. ; Reuter, C. ; Rizzo, A. ; Rosendahl, S. ; Rupp, N. ; Santos, J. M.F.Dos ; Sartorelli, G. ; Scheibelhut, M. ; Schindler, S. ; Schreiner, J. ; Schumann, M. ; Lavina, L. Scotto ; Selvi, M. ; Shagin, P. ; Simgen, H. ; Stein, A. ; Thers, D. ; Tiseni, A. ; Trinchero, G. ; Tunnell, C. ; Sivers, M. Von ; Wall, R. ; Wang, H. ; Weber, M. ; Wei, Y. ; Weinheimer, C. ; Wulf, J. ; Zhang, Y. / Physics reach of the XENON1T dark matter experiment. In: Journal of Cosmology and Astroparticle Physics. 2016 ; Vol. 2016, No. 4.
@article{206f063e38024aaf904205872b28c2e4,
title = "Physics reach of the XENON1T dark matter experiment.",
abstract = "The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80 ± 0.15) · 10-4 (kg·day·keV)-1, mainly due to the decay of 222Rn daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 ± 0.1) (t·y)-1 from radiogenic neutrons, (1.8 ± 0.3) · 10-2 (t·y)-1 from coherent scattering of neutrinos, and less than 0.01 (t·y)-1 from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency eff, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 t fiducial volume, the sensitivity reaches a minimum cross section of 1.6 · 10-47 cm2 at mχ = 50 GeV/c2.",
keywords = "dark matter experiments, dark matter simulations",
author = "E. Aprile and J. Aalbers and F. Agostini and M. Alfonsi and Amaro, {F. D.} and M. Anthony and L. Arazi and Francesco Arneodo and C. Balan and P. Barrow and L. Baudis and B. Bauermeister and T. Berger and P. Breur and A. Breskin and A. Brown and E. Brown and S. Bruenner and G. Bruno and R. Budnik and L. B{\"u}tikofer and Cardoso, {J. M.R.} and M. Cervantes and D. Cichon and D. Coderre and Colijn, {A. P.} and J. Conrad and H. Contreras and Cussonneau, {J. P.} and Decowski, {M. P.} and {De Perio}, P. and Gangi, {P. Di} and Giovanni, {A. Di} and E. Duchovni and S. Fattori and Ferella, {A. D.} and A. Fieguth and D. Franco and W. Fulgione and M. Galloway and M. Garbini and C. Geis and Goetzke, {L. W.} and Z. Greene and C. Grignon and E. Gross and W. Hampel and C. Hasterok and R. Itay and F. Kaether and B. Kaminsky and G. Kessler and A. Kish and H. Landsman and Lang, {R. F.} and D. Lellouch and L. Levinson and Calloch, {M. Le} and C. Levy and S. Lindemann and M. Lindner and Lopes, {J. A.M.} and A. Lyashenko and S. Macmullin and A. Manfredini and Undagoitia, {T. Marrod{\'a}n} and J. Masbou and Massoli, {F. V.} and D. Mayani and Fernandez, {A. J.Melgarejo} and Y. Meng and M. Messina and K. Micheneau and B. Miguez and A. Molinario and M. Murra and J. Naganoma and U. Oberlack and Orrigo, {S. E.A.} and P. Pakarha and B. Pelssers and R. Persiani and F. Piastra and J. Pienaar and G. Plante and N. Priel and L. Rauch and S. Reichard and C. Reuter and A. Rizzo and S. Rosendahl and N. Rupp and Santos, {J. M.F.Dos} and G. Sartorelli and M. Scheibelhut and S. Schindler and J. Schreiner and M. Schumann and Lavina, {L. Scotto} and M. Selvi and P. Shagin and H. Simgen and A. Stein and D. Thers and A. Tiseni and G. Trinchero and C. Tunnell and Sivers, {M. Von} and R. Wall and H. Wang and M. Weber and Y. Wei and C. Weinheimer and J. Wulf and Y. Zhang",
year = "2016",
month = "4",
day = "14",
doi = "10.1088/1475-7516/2016/04/027",
language = "English (US)",
volume = "2016",
journal = "Journal of Cosmology and Astroparticle Physics",
issn = "1475-7516",
publisher = "IOP Publishing Ltd.",
number = "4",

}

TY - JOUR

T1 - Physics reach of the XENON1T dark matter experiment.

AU - Aprile, E.

AU - Aalbers, J.

AU - Agostini, F.

AU - Alfonsi, M.

AU - Amaro, F. D.

AU - Anthony, M.

AU - Arazi, L.

AU - Arneodo, Francesco

AU - Balan, C.

AU - Barrow, P.

AU - Baudis, L.

AU - Bauermeister, B.

AU - Berger, T.

AU - Breur, P.

AU - Breskin, A.

AU - Brown, A.

AU - Brown, E.

AU - Bruenner, S.

AU - Bruno, G.

AU - Budnik, R.

AU - Bütikofer, L.

AU - Cardoso, J. M.R.

AU - Cervantes, M.

AU - Cichon, D.

AU - Coderre, D.

AU - Colijn, A. P.

AU - Conrad, J.

AU - Contreras, H.

AU - Cussonneau, J. P.

AU - Decowski, M. P.

AU - De Perio, P.

AU - Gangi, P. Di

AU - Giovanni, A. Di

AU - Duchovni, E.

AU - Fattori, S.

AU - Ferella, A. D.

AU - Fieguth, A.

AU - Franco, D.

AU - Fulgione, W.

AU - Galloway, M.

AU - Garbini, M.

AU - Geis, C.

AU - Goetzke, L. W.

AU - Greene, Z.

AU - Grignon, C.

AU - Gross, E.

AU - Hampel, W.

AU - Hasterok, C.

AU - Itay, R.

AU - Kaether, F.

AU - Kaminsky, B.

AU - Kessler, G.

AU - Kish, A.

AU - Landsman, H.

AU - Lang, R. F.

AU - Lellouch, D.

AU - Levinson, L.

AU - Calloch, M. Le

AU - Levy, C.

AU - Lindemann, S.

AU - Lindner, M.

AU - Lopes, J. A.M.

AU - Lyashenko, A.

AU - Macmullin, S.

AU - Manfredini, A.

AU - Undagoitia, T. Marrodán

AU - Masbou, J.

AU - Massoli, F. V.

AU - Mayani, D.

AU - Fernandez, A. J.Melgarejo

AU - Meng, Y.

AU - Messina, M.

AU - Micheneau, K.

AU - Miguez, B.

AU - Molinario, A.

AU - Murra, M.

AU - Naganoma, J.

AU - Oberlack, U.

AU - Orrigo, S. E.A.

AU - Pakarha, P.

AU - Pelssers, B.

AU - Persiani, R.

AU - Piastra, F.

AU - Pienaar, J.

AU - Plante, G.

AU - Priel, N.

AU - Rauch, L.

AU - Reichard, S.

AU - Reuter, C.

AU - Rizzo, A.

AU - Rosendahl, S.

AU - Rupp, N.

AU - Santos, J. M.F.Dos

AU - Sartorelli, G.

AU - Scheibelhut, M.

AU - Schindler, S.

AU - Schreiner, J.

AU - Schumann, M.

AU - Lavina, L. Scotto

AU - Selvi, M.

AU - Shagin, P.

AU - Simgen, H.

AU - Stein, A.

AU - Thers, D.

AU - Tiseni, A.

AU - Trinchero, G.

AU - Tunnell, C.

AU - Sivers, M. Von

AU - Wall, R.

AU - Wang, H.

AU - Weber, M.

AU - Wei, Y.

AU - Weinheimer, C.

AU - Wulf, J.

AU - Zhang, Y.

PY - 2016/4/14

Y1 - 2016/4/14

N2 - The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80 ± 0.15) · 10-4 (kg·day·keV)-1, mainly due to the decay of 222Rn daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 ± 0.1) (t·y)-1 from radiogenic neutrons, (1.8 ± 0.3) · 10-2 (t·y)-1 from coherent scattering of neutrinos, and less than 0.01 (t·y)-1 from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency eff, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 t fiducial volume, the sensitivity reaches a minimum cross section of 1.6 · 10-47 cm2 at mχ = 50 GeV/c2.

AB - The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80 ± 0.15) · 10-4 (kg·day·keV)-1, mainly due to the decay of 222Rn daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 ± 0.1) (t·y)-1 from radiogenic neutrons, (1.8 ± 0.3) · 10-2 (t·y)-1 from coherent scattering of neutrinos, and less than 0.01 (t·y)-1 from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency eff, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 t fiducial volume, the sensitivity reaches a minimum cross section of 1.6 · 10-47 cm2 at mχ = 50 GeV/c2.

KW - dark matter experiments

KW - dark matter simulations

UR - http://www.scopus.com/inward/record.url?scp=84963800283&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84963800283&partnerID=8YFLogxK

U2 - 10.1088/1475-7516/2016/04/027

DO - 10.1088/1475-7516/2016/04/027

M3 - Article

AN - SCOPUS:84963800283

VL - 2016

JO - Journal of Cosmology and Astroparticle Physics

JF - Journal of Cosmology and Astroparticle Physics

SN - 1475-7516

IS - 4

M1 - 027

ER -