Phase-response curves give the responses of neurons to transient inputs

Boris S. Gutkin, G. Bard Ermentrout, Alexander Reyes

Research output: Contribution to journalArticle

Abstract

Neuronal firing is determined largely by incoming barrages of excitatory postsynaptic potentials (EPSPs), each of which produce a transient increase in firing probability. To measure the effects of weak transient inputs on firing probability of cortical neurons, we compute phase-response curves (PRCs). PRCs, whose shape can be related to the dynamics of spike generation, document the changes in timing of spikes caused by an EPSP in a repetitively firing neuron as a function of when it arrives in the interspike interval (ISI). The PRC can be exactly related to the poststimulus time histogram (PSTH) so that knowledge of one uniquely determines the other. Typically, PRCs have zero values at the start and end of the ISI, where EPSPs have minimal effects and a peak in the middle. Where the peak occurs depends in part on the firing properties of neurons. The PRC can have regions of positivity and negativity corresponding respectively to speeding up and slowing down the time of the next spike. A simple canonical model for spike generation is introduced that shows how both the background firing rate and the degree of postspike afterhyperpolarization contribute to the shape of the PRC and thus to the PSTH. PRCs in strongly adapting neurons are highly skewed to the right (indicating a higher change in probability when the EPSPs appear late in the ISI) and can have negative regions (indicating a decrease in firing probability) early in the ISI. The PRC becomes more skewed to the right as the firing rate decreases. Thus at low firing rates, the spikes are triggered preferentially by inputs that occur only during a small time interval late in the ISI. This implies that the neuron is more of a coincidence detector at low firing frequencies and more of an integrator at high frequencies. The steady-state theory is shown to also hold for slowly varying inputs.

Original languageEnglish (US)
Pages (from-to)1623-1635
Number of pages13
JournalJournal of Neurophysiology
Volume94
Issue number2
DOIs
StatePublished - Aug 2005

Fingerprint

Excitatory Postsynaptic Potentials
Neurons

ASJC Scopus subject areas

  • Physiology
  • Neuroscience(all)

Cite this

Phase-response curves give the responses of neurons to transient inputs. / Gutkin, Boris S.; Ermentrout, G. Bard; Reyes, Alexander.

In: Journal of Neurophysiology, Vol. 94, No. 2, 08.2005, p. 1623-1635.

Research output: Contribution to journalArticle

Gutkin, Boris S. ; Ermentrout, G. Bard ; Reyes, Alexander. / Phase-response curves give the responses of neurons to transient inputs. In: Journal of Neurophysiology. 2005 ; Vol. 94, No. 2. pp. 1623-1635.
@article{d53d219a609949adb0536da951e620aa,
title = "Phase-response curves give the responses of neurons to transient inputs",
abstract = "Neuronal firing is determined largely by incoming barrages of excitatory postsynaptic potentials (EPSPs), each of which produce a transient increase in firing probability. To measure the effects of weak transient inputs on firing probability of cortical neurons, we compute phase-response curves (PRCs). PRCs, whose shape can be related to the dynamics of spike generation, document the changes in timing of spikes caused by an EPSP in a repetitively firing neuron as a function of when it arrives in the interspike interval (ISI). The PRC can be exactly related to the poststimulus time histogram (PSTH) so that knowledge of one uniquely determines the other. Typically, PRCs have zero values at the start and end of the ISI, where EPSPs have minimal effects and a peak in the middle. Where the peak occurs depends in part on the firing properties of neurons. The PRC can have regions of positivity and negativity corresponding respectively to speeding up and slowing down the time of the next spike. A simple canonical model for spike generation is introduced that shows how both the background firing rate and the degree of postspike afterhyperpolarization contribute to the shape of the PRC and thus to the PSTH. PRCs in strongly adapting neurons are highly skewed to the right (indicating a higher change in probability when the EPSPs appear late in the ISI) and can have negative regions (indicating a decrease in firing probability) early in the ISI. The PRC becomes more skewed to the right as the firing rate decreases. Thus at low firing rates, the spikes are triggered preferentially by inputs that occur only during a small time interval late in the ISI. This implies that the neuron is more of a coincidence detector at low firing frequencies and more of an integrator at high frequencies. The steady-state theory is shown to also hold for slowly varying inputs.",
author = "Gutkin, {Boris S.} and Ermentrout, {G. Bard} and Alexander Reyes",
year = "2005",
month = "8",
doi = "10.1152/jn.00359.2004",
language = "English (US)",
volume = "94",
pages = "1623--1635",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "2",

}

TY - JOUR

T1 - Phase-response curves give the responses of neurons to transient inputs

AU - Gutkin, Boris S.

AU - Ermentrout, G. Bard

AU - Reyes, Alexander

PY - 2005/8

Y1 - 2005/8

N2 - Neuronal firing is determined largely by incoming barrages of excitatory postsynaptic potentials (EPSPs), each of which produce a transient increase in firing probability. To measure the effects of weak transient inputs on firing probability of cortical neurons, we compute phase-response curves (PRCs). PRCs, whose shape can be related to the dynamics of spike generation, document the changes in timing of spikes caused by an EPSP in a repetitively firing neuron as a function of when it arrives in the interspike interval (ISI). The PRC can be exactly related to the poststimulus time histogram (PSTH) so that knowledge of one uniquely determines the other. Typically, PRCs have zero values at the start and end of the ISI, where EPSPs have minimal effects and a peak in the middle. Where the peak occurs depends in part on the firing properties of neurons. The PRC can have regions of positivity and negativity corresponding respectively to speeding up and slowing down the time of the next spike. A simple canonical model for spike generation is introduced that shows how both the background firing rate and the degree of postspike afterhyperpolarization contribute to the shape of the PRC and thus to the PSTH. PRCs in strongly adapting neurons are highly skewed to the right (indicating a higher change in probability when the EPSPs appear late in the ISI) and can have negative regions (indicating a decrease in firing probability) early in the ISI. The PRC becomes more skewed to the right as the firing rate decreases. Thus at low firing rates, the spikes are triggered preferentially by inputs that occur only during a small time interval late in the ISI. This implies that the neuron is more of a coincidence detector at low firing frequencies and more of an integrator at high frequencies. The steady-state theory is shown to also hold for slowly varying inputs.

AB - Neuronal firing is determined largely by incoming barrages of excitatory postsynaptic potentials (EPSPs), each of which produce a transient increase in firing probability. To measure the effects of weak transient inputs on firing probability of cortical neurons, we compute phase-response curves (PRCs). PRCs, whose shape can be related to the dynamics of spike generation, document the changes in timing of spikes caused by an EPSP in a repetitively firing neuron as a function of when it arrives in the interspike interval (ISI). The PRC can be exactly related to the poststimulus time histogram (PSTH) so that knowledge of one uniquely determines the other. Typically, PRCs have zero values at the start and end of the ISI, where EPSPs have minimal effects and a peak in the middle. Where the peak occurs depends in part on the firing properties of neurons. The PRC can have regions of positivity and negativity corresponding respectively to speeding up and slowing down the time of the next spike. A simple canonical model for spike generation is introduced that shows how both the background firing rate and the degree of postspike afterhyperpolarization contribute to the shape of the PRC and thus to the PSTH. PRCs in strongly adapting neurons are highly skewed to the right (indicating a higher change in probability when the EPSPs appear late in the ISI) and can have negative regions (indicating a decrease in firing probability) early in the ISI. The PRC becomes more skewed to the right as the firing rate decreases. Thus at low firing rates, the spikes are triggered preferentially by inputs that occur only during a small time interval late in the ISI. This implies that the neuron is more of a coincidence detector at low firing frequencies and more of an integrator at high frequencies. The steady-state theory is shown to also hold for slowly varying inputs.

UR - http://www.scopus.com/inward/record.url?scp=23044468737&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=23044468737&partnerID=8YFLogxK

U2 - 10.1152/jn.00359.2004

DO - 10.1152/jn.00359.2004

M3 - Article

VL - 94

SP - 1623

EP - 1635

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 2

ER -