Partial proportional odds model - An alternate choice for analyzing pedestrian crash injury severities

Lekshmi Sasidharan, Mónica Menéndez

Research output: Contribution to journalArticle

Abstract

The conventional methods for crash injury severity analyses include either treating the severity data as ordered (e.g. ordered logit/probit models) or non-ordered (e.g. multinomial models). The ordered models require the data to meet proportional odds assumption, according to which the predictors can only have the same effect on different levels of the dependent variable, which is often not the case with crash injury severities. On the other hand, non-ordered analyses completely ignore the inherent hierarchical nature of crash injury severities. Therefore, treating the crash severity data as either ordered or non-ordered results in violating some of the key principles. To address these concerns, this paper explores the application of a partial proportional odds (PPO) model to bridge the gap between ordered and non-ordered severity modeling frameworks. The PPO model allows the covariates that meet the proportional odds assumption to affect different crash severity levels with the same magnitude; whereas the covariates that do not meet the proportional odds assumption can have different effects on different severity levels. This study is based on a five-year (2008-2012) national pedestrian safety dataset for Switzerland. A comparison between the application of PPO models, ordered logit models, and multinomial logit models for pedestrian injury severity evaluation is also included here. The study shows that PPO models outperform the other models considered based on different evaluation criteria. Hence, it is a viable method for analyzing pedestrian crash injury severities.

Original languageEnglish (US)
Pages (from-to)330-340
Number of pages11
JournalAccident Analysis and Prevention
Volume72
DOIs
StatePublished - Nov 2014

Keywords

  • Comparison
  • Crash severity
  • Multinomial logit model
  • Ordered logit model
  • Partial proportional odds model
  • Pedestrian

ASJC Scopus subject areas

  • Human Factors and Ergonomics
  • Safety, Risk, Reliability and Quality
  • Public Health, Environmental and Occupational Health

Fingerprint Dive into the research topics of 'Partial proportional odds model - An alternate choice for analyzing pedestrian crash injury severities'. Together they form a unique fingerprint.

  • Cite this