Orientation selectivity in macaque V1

Diversity and laminar dependence

Dario L. Ringach, Robert Shapley, Michael Hawken

Research output: Contribution to journalArticle

Abstract

We studied the steady-state orientation selectivity of single neurons in macaque primary visual cortex (V1). To analyze the data, two measures of orientation tuning selectivity, circular variance and orientation bandwidth, were computed from the tuning curves. Circular variance is a global measure of the shape of the tuning curve, whereas orientation bandwidth is a local measure of the sharpness of the tuning curve around its peak. Circular variance in V1 was distributed broadly, indicating a great diversity of orientation selectivity. This diversity was also reflected in the individual cortical layers. However, there was a tendency for neurons with high circular variance, meaning low selectivity for orientation, to be concentrated in layers 4C, 3B, and 5. The relative variation of orientation bandwidth across the cortical layers was less than for circular variance, but it showed a similar laminar dependence. Neurons with large orientation bandwidth were found predominantly in layers 4C and 3B. There was a weak correlation between orientation selectivity and the level of spontaneous activity of the neurons. We also assigned a response modulation ratio for each cell, which is a measure of the linearity of spatial summation. Cells with low modulation ratios tended to have higher circular variance and bandwidth than those with high modulation ratios. These findings suggest a revision to the classical view that nonoriented receptive fields are principally found in layer 4C and the cytochrome oxidase-rich blobs in layer 2/3. Instead, a broad distribution of tuning selectivity is found in all cortical layers, and neurons that are weakly tuned for orientation are ubiquitous in V1 cortex.

Original languageEnglish (US)
Pages (from-to)5639-5651
Number of pages13
JournalJournal of Neuroscience
Volume22
Issue number13
StatePublished - Jul 1 2002

Fingerprint

Macaca
Neurons
Electron Transport Complex IV
Visual Cortex

Keywords

  • Bandwidth
  • Circular variance
  • Cortical layer
  • Orientation selectivity
  • Primate vision
  • Striate cortex

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Orientation selectivity in macaque V1 : Diversity and laminar dependence. / Ringach, Dario L.; Shapley, Robert; Hawken, Michael.

In: Journal of Neuroscience, Vol. 22, No. 13, 01.07.2002, p. 5639-5651.

Research output: Contribution to journalArticle

@article{296e5352b14f43199cdca3ef18d6f256,
title = "Orientation selectivity in macaque V1: Diversity and laminar dependence",
abstract = "We studied the steady-state orientation selectivity of single neurons in macaque primary visual cortex (V1). To analyze the data, two measures of orientation tuning selectivity, circular variance and orientation bandwidth, were computed from the tuning curves. Circular variance is a global measure of the shape of the tuning curve, whereas orientation bandwidth is a local measure of the sharpness of the tuning curve around its peak. Circular variance in V1 was distributed broadly, indicating a great diversity of orientation selectivity. This diversity was also reflected in the individual cortical layers. However, there was a tendency for neurons with high circular variance, meaning low selectivity for orientation, to be concentrated in layers 4C, 3B, and 5. The relative variation of orientation bandwidth across the cortical layers was less than for circular variance, but it showed a similar laminar dependence. Neurons with large orientation bandwidth were found predominantly in layers 4C and 3B. There was a weak correlation between orientation selectivity and the level of spontaneous activity of the neurons. We also assigned a response modulation ratio for each cell, which is a measure of the linearity of spatial summation. Cells with low modulation ratios tended to have higher circular variance and bandwidth than those with high modulation ratios. These findings suggest a revision to the classical view that nonoriented receptive fields are principally found in layer 4C and the cytochrome oxidase-rich blobs in layer 2/3. Instead, a broad distribution of tuning selectivity is found in all cortical layers, and neurons that are weakly tuned for orientation are ubiquitous in V1 cortex.",
keywords = "Bandwidth, Circular variance, Cortical layer, Orientation selectivity, Primate vision, Striate cortex",
author = "Ringach, {Dario L.} and Robert Shapley and Michael Hawken",
year = "2002",
month = "7",
day = "1",
language = "English (US)",
volume = "22",
pages = "5639--5651",
journal = "Journal of Neuroscience",
issn = "0270-6474",
publisher = "Society for Neuroscience",
number = "13",

}

TY - JOUR

T1 - Orientation selectivity in macaque V1

T2 - Diversity and laminar dependence

AU - Ringach, Dario L.

AU - Shapley, Robert

AU - Hawken, Michael

PY - 2002/7/1

Y1 - 2002/7/1

N2 - We studied the steady-state orientation selectivity of single neurons in macaque primary visual cortex (V1). To analyze the data, two measures of orientation tuning selectivity, circular variance and orientation bandwidth, were computed from the tuning curves. Circular variance is a global measure of the shape of the tuning curve, whereas orientation bandwidth is a local measure of the sharpness of the tuning curve around its peak. Circular variance in V1 was distributed broadly, indicating a great diversity of orientation selectivity. This diversity was also reflected in the individual cortical layers. However, there was a tendency for neurons with high circular variance, meaning low selectivity for orientation, to be concentrated in layers 4C, 3B, and 5. The relative variation of orientation bandwidth across the cortical layers was less than for circular variance, but it showed a similar laminar dependence. Neurons with large orientation bandwidth were found predominantly in layers 4C and 3B. There was a weak correlation between orientation selectivity and the level of spontaneous activity of the neurons. We also assigned a response modulation ratio for each cell, which is a measure of the linearity of spatial summation. Cells with low modulation ratios tended to have higher circular variance and bandwidth than those with high modulation ratios. These findings suggest a revision to the classical view that nonoriented receptive fields are principally found in layer 4C and the cytochrome oxidase-rich blobs in layer 2/3. Instead, a broad distribution of tuning selectivity is found in all cortical layers, and neurons that are weakly tuned for orientation are ubiquitous in V1 cortex.

AB - We studied the steady-state orientation selectivity of single neurons in macaque primary visual cortex (V1). To analyze the data, two measures of orientation tuning selectivity, circular variance and orientation bandwidth, were computed from the tuning curves. Circular variance is a global measure of the shape of the tuning curve, whereas orientation bandwidth is a local measure of the sharpness of the tuning curve around its peak. Circular variance in V1 was distributed broadly, indicating a great diversity of orientation selectivity. This diversity was also reflected in the individual cortical layers. However, there was a tendency for neurons with high circular variance, meaning low selectivity for orientation, to be concentrated in layers 4C, 3B, and 5. The relative variation of orientation bandwidth across the cortical layers was less than for circular variance, but it showed a similar laminar dependence. Neurons with large orientation bandwidth were found predominantly in layers 4C and 3B. There was a weak correlation between orientation selectivity and the level of spontaneous activity of the neurons. We also assigned a response modulation ratio for each cell, which is a measure of the linearity of spatial summation. Cells with low modulation ratios tended to have higher circular variance and bandwidth than those with high modulation ratios. These findings suggest a revision to the classical view that nonoriented receptive fields are principally found in layer 4C and the cytochrome oxidase-rich blobs in layer 2/3. Instead, a broad distribution of tuning selectivity is found in all cortical layers, and neurons that are weakly tuned for orientation are ubiquitous in V1 cortex.

KW - Bandwidth

KW - Circular variance

KW - Cortical layer

KW - Orientation selectivity

KW - Primate vision

KW - Striate cortex

UR - http://www.scopus.com/inward/record.url?scp=0036662944&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036662944&partnerID=8YFLogxK

M3 - Article

VL - 22

SP - 5639

EP - 5651

JO - Journal of Neuroscience

JF - Journal of Neuroscience

SN - 0270-6474

IS - 13

ER -