Optimal Fine-Scale Structures in Compliance Minimization for a Shear Load

Robert V. Kohn, Benedikt Wirth

Research output: Contribution to journalArticle

Abstract

We return to a classic problem of structural optimization whose solution requires microstructure. It is well-known that perimeter penalization assures the existence of an optimal design. We are interested in the regime where the perimeter penalization is weak; i.e., in the effect of perimeter as a selection mechanism in structural optimization. To explore this topic in a simple yet challenging example, we focus on a two-dimensional elastic shape optimization problem involving the optimal removal of material from a rectangular region loaded in shear. We consider the minimization of a weighted sum of volume, perimeter, and compliance (i.e., the work done by the load), focusing on the behavior as the weight e{open} of the perimeter term tends to 0. Our main result concerns the scaling of the optimal value with respect to e{open}. Our analysis combines an upper bound and a lower bound. The upper bound is proved by finding a near-optimal structure, which resembles a rank-2 laminate except that the approximate interfaces are replaced by branching constructions. The lower bound, which shows that no other microstructure can be much better, uses arguments based on the Hashin-Shtrikman variational principle. The regime being considered here is particularly difficult to explore numerically due to the intrinsic nonconvexity of structural optimization and the spatial complexity of the optimal structures. While perimeter has been considered as a selection mechanism in other problems involving microstructure, the example considered here is novel because optimality seems to require the use of two well-separated length scales.

Original languageEnglish (US)
JournalCommunications on Pure and Applied Mathematics
DOIs
StateAccepted/In press - 2015

Fingerprint

Structural optimization
Perimeter
Compliance
Microstructure
Structural Optimization
Penalization
Shape optimization
Laminates
Lower bound
Upper bound
Non-convexity
Shape Optimization
Weighted Sums
Variational Principle
Length Scale
Branching
Optimality
Scaling
Tend
Optimization Problem

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

@article{e1da4b72830f430f940c7d94388f5dd1,
title = "Optimal Fine-Scale Structures in Compliance Minimization for a Shear Load",
abstract = "We return to a classic problem of structural optimization whose solution requires microstructure. It is well-known that perimeter penalization assures the existence of an optimal design. We are interested in the regime where the perimeter penalization is weak; i.e., in the effect of perimeter as a selection mechanism in structural optimization. To explore this topic in a simple yet challenging example, we focus on a two-dimensional elastic shape optimization problem involving the optimal removal of material from a rectangular region loaded in shear. We consider the minimization of a weighted sum of volume, perimeter, and compliance (i.e., the work done by the load), focusing on the behavior as the weight e{open} of the perimeter term tends to 0. Our main result concerns the scaling of the optimal value with respect to e{open}. Our analysis combines an upper bound and a lower bound. The upper bound is proved by finding a near-optimal structure, which resembles a rank-2 laminate except that the approximate interfaces are replaced by branching constructions. The lower bound, which shows that no other microstructure can be much better, uses arguments based on the Hashin-Shtrikman variational principle. The regime being considered here is particularly difficult to explore numerically due to the intrinsic nonconvexity of structural optimization and the spatial complexity of the optimal structures. While perimeter has been considered as a selection mechanism in other problems involving microstructure, the example considered here is novel because optimality seems to require the use of two well-separated length scales.",
author = "Kohn, {Robert V.} and Benedikt Wirth",
year = "2015",
doi = "10.1002/cpa.21589",
language = "English (US)",
journal = "Communications on Pure and Applied Mathematics",
issn = "0010-3640",
publisher = "Wiley-Liss Inc.",

}

TY - JOUR

T1 - Optimal Fine-Scale Structures in Compliance Minimization for a Shear Load

AU - Kohn, Robert V.

AU - Wirth, Benedikt

PY - 2015

Y1 - 2015

N2 - We return to a classic problem of structural optimization whose solution requires microstructure. It is well-known that perimeter penalization assures the existence of an optimal design. We are interested in the regime where the perimeter penalization is weak; i.e., in the effect of perimeter as a selection mechanism in structural optimization. To explore this topic in a simple yet challenging example, we focus on a two-dimensional elastic shape optimization problem involving the optimal removal of material from a rectangular region loaded in shear. We consider the minimization of a weighted sum of volume, perimeter, and compliance (i.e., the work done by the load), focusing on the behavior as the weight e{open} of the perimeter term tends to 0. Our main result concerns the scaling of the optimal value with respect to e{open}. Our analysis combines an upper bound and a lower bound. The upper bound is proved by finding a near-optimal structure, which resembles a rank-2 laminate except that the approximate interfaces are replaced by branching constructions. The lower bound, which shows that no other microstructure can be much better, uses arguments based on the Hashin-Shtrikman variational principle. The regime being considered here is particularly difficult to explore numerically due to the intrinsic nonconvexity of structural optimization and the spatial complexity of the optimal structures. While perimeter has been considered as a selection mechanism in other problems involving microstructure, the example considered here is novel because optimality seems to require the use of two well-separated length scales.

AB - We return to a classic problem of structural optimization whose solution requires microstructure. It is well-known that perimeter penalization assures the existence of an optimal design. We are interested in the regime where the perimeter penalization is weak; i.e., in the effect of perimeter as a selection mechanism in structural optimization. To explore this topic in a simple yet challenging example, we focus on a two-dimensional elastic shape optimization problem involving the optimal removal of material from a rectangular region loaded in shear. We consider the minimization of a weighted sum of volume, perimeter, and compliance (i.e., the work done by the load), focusing on the behavior as the weight e{open} of the perimeter term tends to 0. Our main result concerns the scaling of the optimal value with respect to e{open}. Our analysis combines an upper bound and a lower bound. The upper bound is proved by finding a near-optimal structure, which resembles a rank-2 laminate except that the approximate interfaces are replaced by branching constructions. The lower bound, which shows that no other microstructure can be much better, uses arguments based on the Hashin-Shtrikman variational principle. The regime being considered here is particularly difficult to explore numerically due to the intrinsic nonconvexity of structural optimization and the spatial complexity of the optimal structures. While perimeter has been considered as a selection mechanism in other problems involving microstructure, the example considered here is novel because optimality seems to require the use of two well-separated length scales.

UR - http://www.scopus.com/inward/record.url?scp=84934783810&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84934783810&partnerID=8YFLogxK

U2 - 10.1002/cpa.21589

DO - 10.1002/cpa.21589

M3 - Article

AN - SCOPUS:84934783810

JO - Communications on Pure and Applied Mathematics

JF - Communications on Pure and Applied Mathematics

SN - 0010-3640

ER -