### Abstract

We study finite automata with both nondeterministic and random states (npfa's). We restrict our attention to those npfa's that accept their languages with a small probability of error and run in polynomial expected time. Equivalently, we study Arthur-Merlin games where the players are limited to polynomial time and constant space. Dwork and Stockmeyer asked whether the above class of npfa's accept only the regular languages (this was known if the automaton has only randomness or only nondeterminism). We show that the answer is yes in the case of npfa's with a 1-way input head. We also show that if L is a nonregular language, then either L or L̄ is not accepted by any npfa with a 2-way input head. Toward this end, we define a new measure of the complexity of a language L, called its 1-tiling complexity. For each n, this is the number of tiles needed to cover the 1's in the `characteristic matrix' of L, namely the binary matrix with a row and column for each string of length ≤n, where entry [x,y] = 1 if and only if the string xyqqL. We show that a language has constant 1-tiling complexity if and only if it is regular, from which the result on 1-way input follows. Our main result regarding the general 2-way input tape follows by contrasting two bounds: an upper bound of polylog(n) on the 1-tiling complexity of every language computed by our model, and a lower bound stating that the 1-tiling complexity of a nonregular language or its complement exceeds a function in 2^{Ω}(√log n) infinitely often. The last lower bound follows by proving that the characteristic matrix of every nonregular language has rank n for infinitely many n. This is our main technical result, and its proof uses techniques of Frobenius and Iohvidov developed for Hankel matrices.

Original language | English (US) |
---|---|

Title of host publication | Conference Proceedings of the Annual ACM Symposium on Theory of Computing |

Publisher | Publ by ACM |

Pages | 676-685 |

Number of pages | 10 |

ISBN (Print) | 0897916638 |

State | Published - 1994 |

Event | Proceedings of the 26th Annual ACM Symposium on the Theory of Computing - Montreal, Que, Can Duration: May 23 1994 → May 25 1994 |

### Other

Other | Proceedings of the 26th Annual ACM Symposium on the Theory of Computing |
---|---|

City | Montreal, Que, Can |

Period | 5/23/94 → 5/25/94 |

### Fingerprint

### ASJC Scopus subject areas

- Software

### Cite this

*Conference Proceedings of the Annual ACM Symposium on Theory of Computing*(pp. 676-685). Publ by ACM.

**On the power of finite automata with both nondeterministic and probabilistic states.** / Condon, Anne; Hellerstein, Lisa; Pottle, Samuel; Wigderson, Avi.

Research output: Chapter in Book/Report/Conference proceeding › Conference contribution

*Conference Proceedings of the Annual ACM Symposium on Theory of Computing.*Publ by ACM, pp. 676-685, Proceedings of the 26th Annual ACM Symposium on the Theory of Computing, Montreal, Que, Can, 5/23/94.

}

TY - GEN

T1 - On the power of finite automata with both nondeterministic and probabilistic states

AU - Condon, Anne

AU - Hellerstein, Lisa

AU - Pottle, Samuel

AU - Wigderson, Avi

PY - 1994

Y1 - 1994

N2 - We study finite automata with both nondeterministic and random states (npfa's). We restrict our attention to those npfa's that accept their languages with a small probability of error and run in polynomial expected time. Equivalently, we study Arthur-Merlin games where the players are limited to polynomial time and constant space. Dwork and Stockmeyer asked whether the above class of npfa's accept only the regular languages (this was known if the automaton has only randomness or only nondeterminism). We show that the answer is yes in the case of npfa's with a 1-way input head. We also show that if L is a nonregular language, then either L or L̄ is not accepted by any npfa with a 2-way input head. Toward this end, we define a new measure of the complexity of a language L, called its 1-tiling complexity. For each n, this is the number of tiles needed to cover the 1's in the `characteristic matrix' of L, namely the binary matrix with a row and column for each string of length ≤n, where entry [x,y] = 1 if and only if the string xyqqL. We show that a language has constant 1-tiling complexity if and only if it is regular, from which the result on 1-way input follows. Our main result regarding the general 2-way input tape follows by contrasting two bounds: an upper bound of polylog(n) on the 1-tiling complexity of every language computed by our model, and a lower bound stating that the 1-tiling complexity of a nonregular language or its complement exceeds a function in 2Ω(√log n) infinitely often. The last lower bound follows by proving that the characteristic matrix of every nonregular language has rank n for infinitely many n. This is our main technical result, and its proof uses techniques of Frobenius and Iohvidov developed for Hankel matrices.

AB - We study finite automata with both nondeterministic and random states (npfa's). We restrict our attention to those npfa's that accept their languages with a small probability of error and run in polynomial expected time. Equivalently, we study Arthur-Merlin games where the players are limited to polynomial time and constant space. Dwork and Stockmeyer asked whether the above class of npfa's accept only the regular languages (this was known if the automaton has only randomness or only nondeterminism). We show that the answer is yes in the case of npfa's with a 1-way input head. We also show that if L is a nonregular language, then either L or L̄ is not accepted by any npfa with a 2-way input head. Toward this end, we define a new measure of the complexity of a language L, called its 1-tiling complexity. For each n, this is the number of tiles needed to cover the 1's in the `characteristic matrix' of L, namely the binary matrix with a row and column for each string of length ≤n, where entry [x,y] = 1 if and only if the string xyqqL. We show that a language has constant 1-tiling complexity if and only if it is regular, from which the result on 1-way input follows. Our main result regarding the general 2-way input tape follows by contrasting two bounds: an upper bound of polylog(n) on the 1-tiling complexity of every language computed by our model, and a lower bound stating that the 1-tiling complexity of a nonregular language or its complement exceeds a function in 2Ω(√log n) infinitely often. The last lower bound follows by proving that the characteristic matrix of every nonregular language has rank n for infinitely many n. This is our main technical result, and its proof uses techniques of Frobenius and Iohvidov developed for Hankel matrices.

UR - http://www.scopus.com/inward/record.url?scp=0027929414&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027929414&partnerID=8YFLogxK

M3 - Conference contribution

AN - SCOPUS:0027929414

SN - 0897916638

SP - 676

EP - 685

BT - Conference Proceedings of the Annual ACM Symposium on Theory of Computing

PB - Publ by ACM

ER -