On the distribution of points of bounded height on equivariant compactifications of vector groups

Antoine Chambert-Loir, Yuri Tschinkel

Research output: Contribution to journalArticle

Abstract

We prove asymptotic formulas for the number of rational points of bounded height on smooth equivariant compactifications of the affine space.

Original languageEnglish (US)
Pages (from-to)421-452
Number of pages32
JournalInventiones Mathematicae
Volume148
Issue number2
DOIs
StatePublished - 2002

Fingerprint

Affine Space
Rational Points
Compactification
Asymptotic Formula
Equivariant

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

On the distribution of points of bounded height on equivariant compactifications of vector groups. / Chambert-Loir, Antoine; Tschinkel, Yuri.

In: Inventiones Mathematicae, Vol. 148, No. 2, 2002, p. 421-452.

Research output: Contribution to journalArticle

@article{50d7d999c2ca4fbaa08b3935e30c2ede,
title = "On the distribution of points of bounded height on equivariant compactifications of vector groups",
abstract = "We prove asymptotic formulas for the number of rational points of bounded height on smooth equivariant compactifications of the affine space.",
author = "Antoine Chambert-Loir and Yuri Tschinkel",
year = "2002",
doi = "10.1007/s002220100200",
language = "English (US)",
volume = "148",
pages = "421--452",
journal = "Inventiones Mathematicae",
issn = "0020-9910",
publisher = "Springer New York",
number = "2",

}

TY - JOUR

T1 - On the distribution of points of bounded height on equivariant compactifications of vector groups

AU - Chambert-Loir, Antoine

AU - Tschinkel, Yuri

PY - 2002

Y1 - 2002

N2 - We prove asymptotic formulas for the number of rational points of bounded height on smooth equivariant compactifications of the affine space.

AB - We prove asymptotic formulas for the number of rational points of bounded height on smooth equivariant compactifications of the affine space.

UR - http://www.scopus.com/inward/record.url?scp=0036013310&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036013310&partnerID=8YFLogxK

U2 - 10.1007/s002220100200

DO - 10.1007/s002220100200

M3 - Article

AN - SCOPUS:0036013310

VL - 148

SP - 421

EP - 452

JO - Inventiones Mathematicae

JF - Inventiones Mathematicae

SN - 0020-9910

IS - 2

ER -