On the Asymptotic Behavior of a Log Gas in the Bulk Scaling Limit in the Presence of a Varying External Potential I

Thomas Bothner, Percy Deift, Alexander Its, Igor Krasovsky

Research output: Contribution to journalArticle

Abstract

We study the determinant $${\det(I-\gamma K_s), 0 < \gamma < 1}$$det(I-γKs),0<γ<1 , of the integrable Fredholm operator K<inf>s</inf> acting on the interval (−1, 1) with kernel $${K_s(\lambda, \mu)= \frac{\sin s(\lambda - \mu)}{\pi (\lambda-\mu)}}$$Ks(λ,μ)=sins(λ-μ)π(λ-μ). This determinant arises in the analysis of a log-gas of interacting particles in the bulk-scaling limit, at inverse temperature $${\beta=2}$$β=2 , in the presence of an external potential $${v=-\frac{1}{2}\ln(1-\gamma)}$$v=-12ln(1-γ) supported on an interval of length $${\frac{2s}{\pi}}$$2sπ. We evaluate, in particular, the double scaling limit of $${\det(I-\gamma K_s)}$$det(I-γKs) as $${s\rightarrow\infty}$$s→∞ and $${\gamma\uparrow 1}$$γ↑1 , in the region $${0\leq\kappa=\frac{v}{s}=-\frac{1}{2s}\ln(1-\gamma)\leq 1-\delta}$$0≤κ=vs=-12sln(1-γ)≤1-δ , for any fixed $${0 < \delta < 1}$$0<δ<1. This problem was first considered by Dyson (Chen Ning Yang: A Great Physicist of the Twentieth Century. International Press, Cambridge, pp. 131–146, 1995).

Original languageEnglish (US)
Pages (from-to)1397-1463
Number of pages67
JournalCommunications in Mathematical Physics
Volume337
Issue number3
DOIs
StatePublished - Aug 1 2015

Fingerprint

Scaling Limit
Pi
determinants
Determinant
Asymptotic Behavior
intervals
scaling
Interval
gases
kernel
Evaluate
temperature
Gas

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Cite this

On the Asymptotic Behavior of a Log Gas in the Bulk Scaling Limit in the Presence of a Varying External Potential I. / Bothner, Thomas; Deift, Percy; Its, Alexander; Krasovsky, Igor.

In: Communications in Mathematical Physics, Vol. 337, No. 3, 01.08.2015, p. 1397-1463.

Research output: Contribution to journalArticle

@article{bc487c15628a4184bdd6e8fe68b32f33,
title = "On the Asymptotic Behavior of a Log Gas in the Bulk Scaling Limit in the Presence of a Varying External Potential I",
abstract = "We study the determinant $${\det(I-\gamma K_s), 0 < \gamma < 1}$$det(I-γKs),0<γ<1 , of the integrable Fredholm operator Ks acting on the interval (−1, 1) with kernel $${K_s(\lambda, \mu)= \frac{\sin s(\lambda - \mu)}{\pi (\lambda-\mu)}}$$Ks(λ,μ)=sins(λ-μ)π(λ-μ). This determinant arises in the analysis of a log-gas of interacting particles in the bulk-scaling limit, at inverse temperature $${\beta=2}$$β=2 , in the presence of an external potential $${v=-\frac{1}{2}\ln(1-\gamma)}$$v=-12ln(1-γ) supported on an interval of length $${\frac{2s}{\pi}}$$2sπ. We evaluate, in particular, the double scaling limit of $${\det(I-\gamma K_s)}$$det(I-γKs) as $${s\rightarrow\infty}$$s→∞ and $${\gamma\uparrow 1}$$γ↑1 , in the region $${0\leq\kappa=\frac{v}{s}=-\frac{1}{2s}\ln(1-\gamma)\leq 1-\delta}$$0≤κ=vs=-12sln(1-γ)≤1-δ , for any fixed $${0 < \delta < 1}$$0<δ<1. This problem was first considered by Dyson (Chen Ning Yang: A Great Physicist of the Twentieth Century. International Press, Cambridge, pp. 131–146, 1995).",
author = "Thomas Bothner and Percy Deift and Alexander Its and Igor Krasovsky",
year = "2015",
month = "8",
day = "1",
doi = "10.1007/s00220-015-2357-1",
language = "English (US)",
volume = "337",
pages = "1397--1463",
journal = "Communications in Mathematical Physics",
issn = "0010-3616",
publisher = "Springer New York",
number = "3",

}

TY - JOUR

T1 - On the Asymptotic Behavior of a Log Gas in the Bulk Scaling Limit in the Presence of a Varying External Potential I

AU - Bothner, Thomas

AU - Deift, Percy

AU - Its, Alexander

AU - Krasovsky, Igor

PY - 2015/8/1

Y1 - 2015/8/1

N2 - We study the determinant $${\det(I-\gamma K_s), 0 < \gamma < 1}$$det(I-γKs),0<γ<1 , of the integrable Fredholm operator Ks acting on the interval (−1, 1) with kernel $${K_s(\lambda, \mu)= \frac{\sin s(\lambda - \mu)}{\pi (\lambda-\mu)}}$$Ks(λ,μ)=sins(λ-μ)π(λ-μ). This determinant arises in the analysis of a log-gas of interacting particles in the bulk-scaling limit, at inverse temperature $${\beta=2}$$β=2 , in the presence of an external potential $${v=-\frac{1}{2}\ln(1-\gamma)}$$v=-12ln(1-γ) supported on an interval of length $${\frac{2s}{\pi}}$$2sπ. We evaluate, in particular, the double scaling limit of $${\det(I-\gamma K_s)}$$det(I-γKs) as $${s\rightarrow\infty}$$s→∞ and $${\gamma\uparrow 1}$$γ↑1 , in the region $${0\leq\kappa=\frac{v}{s}=-\frac{1}{2s}\ln(1-\gamma)\leq 1-\delta}$$0≤κ=vs=-12sln(1-γ)≤1-δ , for any fixed $${0 < \delta < 1}$$0<δ<1. This problem was first considered by Dyson (Chen Ning Yang: A Great Physicist of the Twentieth Century. International Press, Cambridge, pp. 131–146, 1995).

AB - We study the determinant $${\det(I-\gamma K_s), 0 < \gamma < 1}$$det(I-γKs),0<γ<1 , of the integrable Fredholm operator Ks acting on the interval (−1, 1) with kernel $${K_s(\lambda, \mu)= \frac{\sin s(\lambda - \mu)}{\pi (\lambda-\mu)}}$$Ks(λ,μ)=sins(λ-μ)π(λ-μ). This determinant arises in the analysis of a log-gas of interacting particles in the bulk-scaling limit, at inverse temperature $${\beta=2}$$β=2 , in the presence of an external potential $${v=-\frac{1}{2}\ln(1-\gamma)}$$v=-12ln(1-γ) supported on an interval of length $${\frac{2s}{\pi}}$$2sπ. We evaluate, in particular, the double scaling limit of $${\det(I-\gamma K_s)}$$det(I-γKs) as $${s\rightarrow\infty}$$s→∞ and $${\gamma\uparrow 1}$$γ↑1 , in the region $${0\leq\kappa=\frac{v}{s}=-\frac{1}{2s}\ln(1-\gamma)\leq 1-\delta}$$0≤κ=vs=-12sln(1-γ)≤1-δ , for any fixed $${0 < \delta < 1}$$0<δ<1. This problem was first considered by Dyson (Chen Ning Yang: A Great Physicist of the Twentieth Century. International Press, Cambridge, pp. 131–146, 1995).

UR - http://www.scopus.com/inward/record.url?scp=84928724584&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84928724584&partnerID=8YFLogxK

U2 - 10.1007/s00220-015-2357-1

DO - 10.1007/s00220-015-2357-1

M3 - Article

AN - SCOPUS:84928724584

VL - 337

SP - 1397

EP - 1463

JO - Communications in Mathematical Physics

JF - Communications in Mathematical Physics

SN - 0010-3616

IS - 3

ER -