On sl(2)-equivariant quantizations

Sofiane Bouarroudj, M. Iadh Ayari

Research output: Contribution to journalArticle

Abstract

By computing certain cohomology of Vect(M) of smooth vector fields we prove that on 1-dimensional manifolds M there is no quantization map intertwining the action of non-projective embeddings of the Lie algebra sl(2) into the Lie algebra Vect(M). Contrariwise, for projective embeddings sl[(2)-equivariant quantization exists.

Original languageEnglish (US)
Pages (from-to)179-187
Number of pages9
JournalJournal of Nonlinear Mathematical Physics
Volume14
Issue number2
DOIs
StatePublished - Apr 1 2007

Fingerprint

Equivariant
embedding
Quantization
Lie Algebra
algebra
Projective Embedding
homology
Cohomology
Vector Field
Computing

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Cite this

On sl(2)-equivariant quantizations. / Bouarroudj, Sofiane; Ayari, M. Iadh.

In: Journal of Nonlinear Mathematical Physics, Vol. 14, No. 2, 01.04.2007, p. 179-187.

Research output: Contribution to journalArticle

Bouarroudj, Sofiane ; Ayari, M. Iadh. / On sl(2)-equivariant quantizations. In: Journal of Nonlinear Mathematical Physics. 2007 ; Vol. 14, No. 2. pp. 179-187.
@article{8981424210104c79b2eb9db1043ea537,
title = "On sl(2)-equivariant quantizations",
abstract = "By computing certain cohomology of Vect(M) of smooth vector fields we prove that on 1-dimensional manifolds M there is no quantization map intertwining the action of non-projective embeddings of the Lie algebra sl(2) into the Lie algebra Vect(M). Contrariwise, for projective embeddings sl[(2)-equivariant quantization exists.",
author = "Sofiane Bouarroudj and Ayari, {M. Iadh}",
year = "2007",
month = "4",
day = "1",
doi = "10.2991/jnmp.2007.14.2.4",
language = "English (US)",
volume = "14",
pages = "179--187",
journal = "Journal of Nonlinear Mathematical Physics",
issn = "1402-9251",
publisher = "World Scientific Publishing Co. Pte Ltd",
number = "2",

}

TY - JOUR

T1 - On sl(2)-equivariant quantizations

AU - Bouarroudj, Sofiane

AU - Ayari, M. Iadh

PY - 2007/4/1

Y1 - 2007/4/1

N2 - By computing certain cohomology of Vect(M) of smooth vector fields we prove that on 1-dimensional manifolds M there is no quantization map intertwining the action of non-projective embeddings of the Lie algebra sl(2) into the Lie algebra Vect(M). Contrariwise, for projective embeddings sl[(2)-equivariant quantization exists.

AB - By computing certain cohomology of Vect(M) of smooth vector fields we prove that on 1-dimensional manifolds M there is no quantization map intertwining the action of non-projective embeddings of the Lie algebra sl(2) into the Lie algebra Vect(M). Contrariwise, for projective embeddings sl[(2)-equivariant quantization exists.

UR - http://www.scopus.com/inward/record.url?scp=34147168710&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34147168710&partnerID=8YFLogxK

U2 - 10.2991/jnmp.2007.14.2.4

DO - 10.2991/jnmp.2007.14.2.4

M3 - Article

VL - 14

SP - 179

EP - 187

JO - Journal of Nonlinear Mathematical Physics

JF - Journal of Nonlinear Mathematical Physics

SN - 1402-9251

IS - 2

ER -