On a local-global principle for H3of function fields of surfaces over a finite field

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

Let K be the function field of a smooth projective surface S over a finite field F. In this article, following the work of Parimala and Suresh, we establish a local-global principle for the divisibility of elements in H3(K, ℤ/ℓ) by elements in H2(K, ℤ/ℓ),l≠car.K.

Original languageEnglish (US)
Title of host publicationProgress in Mathematics
PublisherSpringer Basel
Pages219-230
Number of pages12
Volume320
DOIs
StatePublished - 2017

Publication series

NameProgress in Mathematics
Volume320
ISSN (Print)0743-1643
ISSN (Electronic)2296-505X

Fingerprint

Local-global Principle
Divisibility
Function Fields
Galois field

Keywords

  • Galois cohomology
  • Local global principles
  • Ramification
  • Surfaces over finite fields
  • Unramified cohomology

ASJC Scopus subject areas

  • Algebra and Number Theory
  • Analysis
  • Geometry and Topology

Cite this

Pirutka, A. (2017). On a local-global principle for H3of function fields of surfaces over a finite field. In Progress in Mathematics (Vol. 320, pp. 219-230). (Progress in Mathematics; Vol. 320). Springer Basel. https://doi.org/10.1007/978-3-319-46852-5_10

On a local-global principle for H3of function fields of surfaces over a finite field. / Pirutka, Alena.

Progress in Mathematics. Vol. 320 Springer Basel, 2017. p. 219-230 (Progress in Mathematics; Vol. 320).

Research output: Chapter in Book/Report/Conference proceedingChapter

Pirutka, A 2017, On a local-global principle for H3of function fields of surfaces over a finite field. in Progress in Mathematics. vol. 320, Progress in Mathematics, vol. 320, Springer Basel, pp. 219-230. https://doi.org/10.1007/978-3-319-46852-5_10
Pirutka A. On a local-global principle for H3of function fields of surfaces over a finite field. In Progress in Mathematics. Vol. 320. Springer Basel. 2017. p. 219-230. (Progress in Mathematics). https://doi.org/10.1007/978-3-319-46852-5_10
Pirutka, Alena. / On a local-global principle for H3of function fields of surfaces over a finite field. Progress in Mathematics. Vol. 320 Springer Basel, 2017. pp. 219-230 (Progress in Mathematics).
@inbook{cf9fc51bb1974785b62d04f4df2f2ca3,
title = "On a local-global principle for H3of function fields of surfaces over a finite field",
abstract = "Let K be the function field of a smooth projective surface S over a finite field F. In this article, following the work of Parimala and Suresh, we establish a local-global principle for the divisibility of elements in H3(K, ℤ/ℓ) by elements in H2(K, ℤ/ℓ),l≠car.K.",
keywords = "Galois cohomology, Local global principles, Ramification, Surfaces over finite fields, Unramified cohomology",
author = "Alena Pirutka",
year = "2017",
doi = "10.1007/978-3-319-46852-5_10",
language = "English (US)",
volume = "320",
series = "Progress in Mathematics",
publisher = "Springer Basel",
pages = "219--230",
booktitle = "Progress in Mathematics",

}

TY - CHAP

T1 - On a local-global principle for H3of function fields of surfaces over a finite field

AU - Pirutka, Alena

PY - 2017

Y1 - 2017

N2 - Let K be the function field of a smooth projective surface S over a finite field F. In this article, following the work of Parimala and Suresh, we establish a local-global principle for the divisibility of elements in H3(K, ℤ/ℓ) by elements in H2(K, ℤ/ℓ),l≠car.K.

AB - Let K be the function field of a smooth projective surface S over a finite field F. In this article, following the work of Parimala and Suresh, we establish a local-global principle for the divisibility of elements in H3(K, ℤ/ℓ) by elements in H2(K, ℤ/ℓ),l≠car.K.

KW - Galois cohomology

KW - Local global principles

KW - Ramification

KW - Surfaces over finite fields

KW - Unramified cohomology

UR - http://www.scopus.com/inward/record.url?scp=85019668023&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85019668023&partnerID=8YFLogxK

U2 - 10.1007/978-3-319-46852-5_10

DO - 10.1007/978-3-319-46852-5_10

M3 - Chapter

VL - 320

T3 - Progress in Mathematics

SP - 219

EP - 230

BT - Progress in Mathematics

PB - Springer Basel

ER -