Nonlinear instability of elementary stratified flows at large Richardson number

Andrew J. Majda, Michael G. Shefter

Research output: Contribution to journalArticle

Abstract

Elementary stably stratified flows with linear instability at all large Richardson numbers have been introduced recently by the authors [J. Fluid Mech. 376, 319-350 (1998)]. These elementary stratified flows have spatially constant but time varying gradients for velocity and density. Here the nonlinear stability of such flows in two space dimensions is studied through a combination of numerical simulations and theory. The elementary flows that are linearly unstable at large Richardson numbers are purely vortical flows; here it is established that from random initial data, linearized instability spontaneously generates local shears on buoyancy time scales near a specific angle of inclination that nonlinearly saturates into localized regions of strong mixing with density overturning resembling Kelvin-Helmholtz instability. It is also established here that the phase of these unstable waves does not satisfy the dispersion relation of linear gravity waves. The vortical flows are one family of stably stratified flows with uniform shear layers at the other extreme and elementary stably stratified flows with a mixture of vorticity and strain exhibiting behavior between these two extremes. The concept of effective shear is introduced for these general elementary flows; for each large Richardson number there is a critical effective shear with strong nonlinear instability, density overturning, and mixing for elementary flows with effective shear below this critical value. The analysis is facilitated by rewriting the equations for nonlinear perturbations in vorticity-stream form in a mean Lagrangian reference frame.

Original languageEnglish (US)
Pages (from-to)3-27
Number of pages25
JournalChaos
Volume10
Issue number1
StatePublished - Mar 2000

Fingerprint

Nonlinear Instability
Stratified Flow
stratified flow
Richardson number
shear
Vorticity
vorticity
Extremes
Unstable
Gravity waves
Kelvin-Helmholtz Instability
Strong Mixing
Kelvin-Helmholtz instability
Buoyancy
Nonlinear Perturbations
Gravity Waves
Nonlinear Stability
shear layers
Inclination
Rewriting

ASJC Scopus subject areas

  • Applied Mathematics
  • Mathematical Physics
  • Physics and Astronomy(all)
  • Statistical and Nonlinear Physics

Cite this

Nonlinear instability of elementary stratified flows at large Richardson number. / Majda, Andrew J.; Shefter, Michael G.

In: Chaos, Vol. 10, No. 1, 03.2000, p. 3-27.

Research output: Contribution to journalArticle

@article{c9ca6bbbeeb14e9b8151f139955fb28a,
title = "Nonlinear instability of elementary stratified flows at large Richardson number",
abstract = "Elementary stably stratified flows with linear instability at all large Richardson numbers have been introduced recently by the authors [J. Fluid Mech. 376, 319-350 (1998)]. These elementary stratified flows have spatially constant but time varying gradients for velocity and density. Here the nonlinear stability of such flows in two space dimensions is studied through a combination of numerical simulations and theory. The elementary flows that are linearly unstable at large Richardson numbers are purely vortical flows; here it is established that from random initial data, linearized instability spontaneously generates local shears on buoyancy time scales near a specific angle of inclination that nonlinearly saturates into localized regions of strong mixing with density overturning resembling Kelvin-Helmholtz instability. It is also established here that the phase of these unstable waves does not satisfy the dispersion relation of linear gravity waves. The vortical flows are one family of stably stratified flows with uniform shear layers at the other extreme and elementary stably stratified flows with a mixture of vorticity and strain exhibiting behavior between these two extremes. The concept of effective shear is introduced for these general elementary flows; for each large Richardson number there is a critical effective shear with strong nonlinear instability, density overturning, and mixing for elementary flows with effective shear below this critical value. The analysis is facilitated by rewriting the equations for nonlinear perturbations in vorticity-stream form in a mean Lagrangian reference frame.",
author = "Majda, {Andrew J.} and Shefter, {Michael G.}",
year = "2000",
month = "3",
language = "English (US)",
volume = "10",
pages = "3--27",
journal = "Chaos",
issn = "1054-1500",
publisher = "American Institute of Physics Publising LLC",
number = "1",

}

TY - JOUR

T1 - Nonlinear instability of elementary stratified flows at large Richardson number

AU - Majda, Andrew J.

AU - Shefter, Michael G.

PY - 2000/3

Y1 - 2000/3

N2 - Elementary stably stratified flows with linear instability at all large Richardson numbers have been introduced recently by the authors [J. Fluid Mech. 376, 319-350 (1998)]. These elementary stratified flows have spatially constant but time varying gradients for velocity and density. Here the nonlinear stability of such flows in two space dimensions is studied through a combination of numerical simulations and theory. The elementary flows that are linearly unstable at large Richardson numbers are purely vortical flows; here it is established that from random initial data, linearized instability spontaneously generates local shears on buoyancy time scales near a specific angle of inclination that nonlinearly saturates into localized regions of strong mixing with density overturning resembling Kelvin-Helmholtz instability. It is also established here that the phase of these unstable waves does not satisfy the dispersion relation of linear gravity waves. The vortical flows are one family of stably stratified flows with uniform shear layers at the other extreme and elementary stably stratified flows with a mixture of vorticity and strain exhibiting behavior between these two extremes. The concept of effective shear is introduced for these general elementary flows; for each large Richardson number there is a critical effective shear with strong nonlinear instability, density overturning, and mixing for elementary flows with effective shear below this critical value. The analysis is facilitated by rewriting the equations for nonlinear perturbations in vorticity-stream form in a mean Lagrangian reference frame.

AB - Elementary stably stratified flows with linear instability at all large Richardson numbers have been introduced recently by the authors [J. Fluid Mech. 376, 319-350 (1998)]. These elementary stratified flows have spatially constant but time varying gradients for velocity and density. Here the nonlinear stability of such flows in two space dimensions is studied through a combination of numerical simulations and theory. The elementary flows that are linearly unstable at large Richardson numbers are purely vortical flows; here it is established that from random initial data, linearized instability spontaneously generates local shears on buoyancy time scales near a specific angle of inclination that nonlinearly saturates into localized regions of strong mixing with density overturning resembling Kelvin-Helmholtz instability. It is also established here that the phase of these unstable waves does not satisfy the dispersion relation of linear gravity waves. The vortical flows are one family of stably stratified flows with uniform shear layers at the other extreme and elementary stably stratified flows with a mixture of vorticity and strain exhibiting behavior between these two extremes. The concept of effective shear is introduced for these general elementary flows; for each large Richardson number there is a critical effective shear with strong nonlinear instability, density overturning, and mixing for elementary flows with effective shear below this critical value. The analysis is facilitated by rewriting the equations for nonlinear perturbations in vorticity-stream form in a mean Lagrangian reference frame.

UR - http://www.scopus.com/inward/record.url?scp=0034146999&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034146999&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0034146999

VL - 10

SP - 3

EP - 27

JO - Chaos

JF - Chaos

SN - 1054-1500

IS - 1

ER -