New insights into the performance and optimization of galloping flow energy harvesters

Amin Bibo, Mohammed Daqaq

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents a generalized formulation, analysis, and optimization of energy harvesters subjected to galloping and base excitations. The harvester consists of a cantilever beam with a bluff body attached at the free end. A nondimensional lumped-parameter model which accounts for the combined loading and different electro-mechanical transduction mechanisms is presented. The aerodynamic loading is modeled using the quasisteady assumption with polynomial approximation. A nonlinear analysis is carried out and an approximate analytical solution is obtained. A dimensional analysis is performed to identify the important parameters that affect the system's response. It is shown that the response curves of the harvester can be generated in terms of only three dimensionless loading parameters. These curves can serve as a complete design guide for scaling and optimizing the performance of galloping-based harvesters. As a special case study, a harvester subjected to only galloping excitations is analyzed. It is shown that, for a given shape of the bluff body and under quasi-steady flow conditions, the harvester's dimensionless response can be described by a single universal curve irrespective to the geometric, mechanical, and electrical design parameters of the harvester. The universal curve is utilized to obtain the optimal harvesting circuit design parameters, that minimize the cut-in wind speed and maximize the output power, and predict the harvester's total conversion efficiency. KEYWORDS: Energy Harvesting, Galloping, Base Excitations.

Original languageEnglish (US)
Title of host publicationASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
PublisherWeb Portal ASME (American Society of Mechanical Engineers)
Volume2
ISBN (Electronic)9780791846155
DOIs
StatePublished - Jan 1 2014
EventASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014 - Newport, United States
Duration: Sep 8 2014Sep 10 2014

Other

OtherASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
CountryUnited States
CityNewport
Period9/8/149/10/14

Fingerprint

Harvesters
Polynomial approximation
Energy harvesting
Cantilever beams
Nonlinear analysis
Steady flow
Conversion efficiency
Aerodynamics
Networks (circuits)

ASJC Scopus subject areas

  • Biomaterials
  • Civil and Structural Engineering

Cite this

Bibo, A., & Daqaq, M. (2014). New insights into the performance and optimization of galloping flow energy harvesters. In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014 (Vol. 2). Web Portal ASME (American Society of Mechanical Engineers). https://doi.org/10.1115/SMASIS20147453

New insights into the performance and optimization of galloping flow energy harvesters. / Bibo, Amin; Daqaq, Mohammed.

ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014. Vol. 2 Web Portal ASME (American Society of Mechanical Engineers), 2014.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Bibo, A & Daqaq, M 2014, New insights into the performance and optimization of galloping flow energy harvesters. in ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014. vol. 2, Web Portal ASME (American Society of Mechanical Engineers), ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014, Newport, United States, 9/8/14. https://doi.org/10.1115/SMASIS20147453
Bibo A, Daqaq M. New insights into the performance and optimization of galloping flow energy harvesters. In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014. Vol. 2. Web Portal ASME (American Society of Mechanical Engineers). 2014 https://doi.org/10.1115/SMASIS20147453
Bibo, Amin ; Daqaq, Mohammed. / New insights into the performance and optimization of galloping flow energy harvesters. ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014. Vol. 2 Web Portal ASME (American Society of Mechanical Engineers), 2014.
@inproceedings{00d13585740547979c485cb075e37238,
title = "New insights into the performance and optimization of galloping flow energy harvesters",
abstract = "This paper presents a generalized formulation, analysis, and optimization of energy harvesters subjected to galloping and base excitations. The harvester consists of a cantilever beam with a bluff body attached at the free end. A nondimensional lumped-parameter model which accounts for the combined loading and different electro-mechanical transduction mechanisms is presented. The aerodynamic loading is modeled using the quasisteady assumption with polynomial approximation. A nonlinear analysis is carried out and an approximate analytical solution is obtained. A dimensional analysis is performed to identify the important parameters that affect the system's response. It is shown that the response curves of the harvester can be generated in terms of only three dimensionless loading parameters. These curves can serve as a complete design guide for scaling and optimizing the performance of galloping-based harvesters. As a special case study, a harvester subjected to only galloping excitations is analyzed. It is shown that, for a given shape of the bluff body and under quasi-steady flow conditions, the harvester's dimensionless response can be described by a single universal curve irrespective to the geometric, mechanical, and electrical design parameters of the harvester. The universal curve is utilized to obtain the optimal harvesting circuit design parameters, that minimize the cut-in wind speed and maximize the output power, and predict the harvester's total conversion efficiency. KEYWORDS: Energy Harvesting, Galloping, Base Excitations.",
author = "Amin Bibo and Mohammed Daqaq",
year = "2014",
month = "1",
day = "1",
doi = "10.1115/SMASIS20147453",
language = "English (US)",
volume = "2",
booktitle = "ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014",
publisher = "Web Portal ASME (American Society of Mechanical Engineers)",

}

TY - GEN

T1 - New insights into the performance and optimization of galloping flow energy harvesters

AU - Bibo, Amin

AU - Daqaq, Mohammed

PY - 2014/1/1

Y1 - 2014/1/1

N2 - This paper presents a generalized formulation, analysis, and optimization of energy harvesters subjected to galloping and base excitations. The harvester consists of a cantilever beam with a bluff body attached at the free end. A nondimensional lumped-parameter model which accounts for the combined loading and different electro-mechanical transduction mechanisms is presented. The aerodynamic loading is modeled using the quasisteady assumption with polynomial approximation. A nonlinear analysis is carried out and an approximate analytical solution is obtained. A dimensional analysis is performed to identify the important parameters that affect the system's response. It is shown that the response curves of the harvester can be generated in terms of only three dimensionless loading parameters. These curves can serve as a complete design guide for scaling and optimizing the performance of galloping-based harvesters. As a special case study, a harvester subjected to only galloping excitations is analyzed. It is shown that, for a given shape of the bluff body and under quasi-steady flow conditions, the harvester's dimensionless response can be described by a single universal curve irrespective to the geometric, mechanical, and electrical design parameters of the harvester. The universal curve is utilized to obtain the optimal harvesting circuit design parameters, that minimize the cut-in wind speed and maximize the output power, and predict the harvester's total conversion efficiency. KEYWORDS: Energy Harvesting, Galloping, Base Excitations.

AB - This paper presents a generalized formulation, analysis, and optimization of energy harvesters subjected to galloping and base excitations. The harvester consists of a cantilever beam with a bluff body attached at the free end. A nondimensional lumped-parameter model which accounts for the combined loading and different electro-mechanical transduction mechanisms is presented. The aerodynamic loading is modeled using the quasisteady assumption with polynomial approximation. A nonlinear analysis is carried out and an approximate analytical solution is obtained. A dimensional analysis is performed to identify the important parameters that affect the system's response. It is shown that the response curves of the harvester can be generated in terms of only three dimensionless loading parameters. These curves can serve as a complete design guide for scaling and optimizing the performance of galloping-based harvesters. As a special case study, a harvester subjected to only galloping excitations is analyzed. It is shown that, for a given shape of the bluff body and under quasi-steady flow conditions, the harvester's dimensionless response can be described by a single universal curve irrespective to the geometric, mechanical, and electrical design parameters of the harvester. The universal curve is utilized to obtain the optimal harvesting circuit design parameters, that minimize the cut-in wind speed and maximize the output power, and predict the harvester's total conversion efficiency. KEYWORDS: Energy Harvesting, Galloping, Base Excitations.

UR - http://www.scopus.com/inward/record.url?scp=84920072419&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84920072419&partnerID=8YFLogxK

U2 - 10.1115/SMASIS20147453

DO - 10.1115/SMASIS20147453

M3 - Conference contribution

AN - SCOPUS:84920072419

VL - 2

BT - ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014

PB - Web Portal ASME (American Society of Mechanical Engineers)

ER -