New insights into the classification and nomenclature of cortical GABAergic interneurons

Javier Defelipe, Pedro L. López-Cruz, Ruth Benavides-Piccione, Concha Bielza, Pedro Larrañaga, Stewart Anderson, Andreas Burkhalter, Bruno Cauli, Alfonso Fairén, Dirk Feldmeyer, Gordon Fishell, David Fitzpatrick, Tamás F. Freund, Guillermo González-Burgos, Shaul Hestrin, Sean Hill, Patrick R. Hof, Josh Huang, Edward G. Jones, Yasuo Kawaguchi & 22 others Zoltán Kisvárday, Yoshiyuki Kubota, David A. Lewis, Oscar Marín, Henry Markram, Chris J. McBain, Hanno S. Meyer, Hannah Monyer, Sacha B. Nelson, Kathleen Rockland, Jean Rossier, John L.R. Rubenstein, Bernardo Rudy, Massimo Scanziani, Gordon M. Shepherd, Chet C. Sherwood, Jochen F. Staiger, Gábor Tamás, Alex Thomson, Yun Weng, Rafael Yuste, Giorgio A. Ascoli

    Research output: Contribution to journalArticle

    Abstract

    A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus.

    Original languageEnglish (US)
    Pages (from-to)202-216
    Number of pages15
    JournalNature Reviews Neuroscience
    Volume14
    Issue number3
    DOIs
    StatePublished - Mar 1 2013

    Fingerprint

    Interneurons
    Terminology
    Neurons
    Expert Systems
    Bayes Theorem
    Cerebral Cortex
    Names
    Cluster Analysis

    ASJC Scopus subject areas

    • Neuroscience(all)

    Cite this

    Defelipe, J., López-Cruz, P. L., Benavides-Piccione, R., Bielza, C., Larrañaga, P., Anderson, S., ... Ascoli, G. A. (2013). New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience, 14(3), 202-216. https://doi.org/10.1038/nrn3444

    New insights into the classification and nomenclature of cortical GABAergic interneurons. / Defelipe, Javier; López-Cruz, Pedro L.; Benavides-Piccione, Ruth; Bielza, Concha; Larrañaga, Pedro; Anderson, Stewart; Burkhalter, Andreas; Cauli, Bruno; Fairén, Alfonso; Feldmeyer, Dirk; Fishell, Gordon; Fitzpatrick, David; Freund, Tamás F.; González-Burgos, Guillermo; Hestrin, Shaul; Hill, Sean; Hof, Patrick R.; Huang, Josh; Jones, Edward G.; Kawaguchi, Yasuo; Kisvárday, Zoltán; Kubota, Yoshiyuki; Lewis, David A.; Marín, Oscar; Markram, Henry; McBain, Chris J.; Meyer, Hanno S.; Monyer, Hannah; Nelson, Sacha B.; Rockland, Kathleen; Rossier, Jean; Rubenstein, John L.R.; Rudy, Bernardo; Scanziani, Massimo; Shepherd, Gordon M.; Sherwood, Chet C.; Staiger, Jochen F.; Tamás, Gábor; Thomson, Alex; Weng, Yun; Yuste, Rafael; Ascoli, Giorgio A.

    In: Nature Reviews Neuroscience, Vol. 14, No. 3, 01.03.2013, p. 202-216.

    Research output: Contribution to journalArticle

    Defelipe, J, López-Cruz, PL, Benavides-Piccione, R, Bielza, C, Larrañaga, P, Anderson, S, Burkhalter, A, Cauli, B, Fairén, A, Feldmeyer, D, Fishell, G, Fitzpatrick, D, Freund, TF, González-Burgos, G, Hestrin, S, Hill, S, Hof, PR, Huang, J, Jones, EG, Kawaguchi, Y, Kisvárday, Z, Kubota, Y, Lewis, DA, Marín, O, Markram, H, McBain, CJ, Meyer, HS, Monyer, H, Nelson, SB, Rockland, K, Rossier, J, Rubenstein, JLR, Rudy, B, Scanziani, M, Shepherd, GM, Sherwood, CC, Staiger, JF, Tamás, G, Thomson, A, Weng, Y, Yuste, R & Ascoli, GA 2013, 'New insights into the classification and nomenclature of cortical GABAergic interneurons', Nature Reviews Neuroscience, vol. 14, no. 3, pp. 202-216. https://doi.org/10.1038/nrn3444
    Defelipe J, López-Cruz PL, Benavides-Piccione R, Bielza C, Larrañaga P, Anderson S et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience. 2013 Mar 1;14(3):202-216. https://doi.org/10.1038/nrn3444
    Defelipe, Javier ; López-Cruz, Pedro L. ; Benavides-Piccione, Ruth ; Bielza, Concha ; Larrañaga, Pedro ; Anderson, Stewart ; Burkhalter, Andreas ; Cauli, Bruno ; Fairén, Alfonso ; Feldmeyer, Dirk ; Fishell, Gordon ; Fitzpatrick, David ; Freund, Tamás F. ; González-Burgos, Guillermo ; Hestrin, Shaul ; Hill, Sean ; Hof, Patrick R. ; Huang, Josh ; Jones, Edward G. ; Kawaguchi, Yasuo ; Kisvárday, Zoltán ; Kubota, Yoshiyuki ; Lewis, David A. ; Marín, Oscar ; Markram, Henry ; McBain, Chris J. ; Meyer, Hanno S. ; Monyer, Hannah ; Nelson, Sacha B. ; Rockland, Kathleen ; Rossier, Jean ; Rubenstein, John L.R. ; Rudy, Bernardo ; Scanziani, Massimo ; Shepherd, Gordon M. ; Sherwood, Chet C. ; Staiger, Jochen F. ; Tamás, Gábor ; Thomson, Alex ; Weng, Yun ; Yuste, Rafael ; Ascoli, Giorgio A. / New insights into the classification and nomenclature of cortical GABAergic interneurons. In: Nature Reviews Neuroscience. 2013 ; Vol. 14, No. 3. pp. 202-216.
    @article{c84173328ec847ca9adccd6986563035,
    title = "New insights into the classification and nomenclature of cortical GABAergic interneurons",
    abstract = "A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus.",
    author = "Javier Defelipe and L{\'o}pez-Cruz, {Pedro L.} and Ruth Benavides-Piccione and Concha Bielza and Pedro Larra{\~n}aga and Stewart Anderson and Andreas Burkhalter and Bruno Cauli and Alfonso Fair{\'e}n and Dirk Feldmeyer and Gordon Fishell and David Fitzpatrick and Freund, {Tam{\'a}s F.} and Guillermo Gonz{\'a}lez-Burgos and Shaul Hestrin and Sean Hill and Hof, {Patrick R.} and Josh Huang and Jones, {Edward G.} and Yasuo Kawaguchi and Zolt{\'a}n Kisv{\'a}rday and Yoshiyuki Kubota and Lewis, {David A.} and Oscar Mar{\'i}n and Henry Markram and McBain, {Chris J.} and Meyer, {Hanno S.} and Hannah Monyer and Nelson, {Sacha B.} and Kathleen Rockland and Jean Rossier and Rubenstein, {John L.R.} and Bernardo Rudy and Massimo Scanziani and Shepherd, {Gordon M.} and Sherwood, {Chet C.} and Staiger, {Jochen F.} and G{\'a}bor Tam{\'a}s and Alex Thomson and Yun Weng and Rafael Yuste and Ascoli, {Giorgio A.}",
    year = "2013",
    month = "3",
    day = "1",
    doi = "10.1038/nrn3444",
    language = "English (US)",
    volume = "14",
    pages = "202--216",
    journal = "Nature Reviews Neuroscience",
    issn = "1471-003X",
    publisher = "Nature Publishing Group",
    number = "3",

    }

    TY - JOUR

    T1 - New insights into the classification and nomenclature of cortical GABAergic interneurons

    AU - Defelipe, Javier

    AU - López-Cruz, Pedro L.

    AU - Benavides-Piccione, Ruth

    AU - Bielza, Concha

    AU - Larrañaga, Pedro

    AU - Anderson, Stewart

    AU - Burkhalter, Andreas

    AU - Cauli, Bruno

    AU - Fairén, Alfonso

    AU - Feldmeyer, Dirk

    AU - Fishell, Gordon

    AU - Fitzpatrick, David

    AU - Freund, Tamás F.

    AU - González-Burgos, Guillermo

    AU - Hestrin, Shaul

    AU - Hill, Sean

    AU - Hof, Patrick R.

    AU - Huang, Josh

    AU - Jones, Edward G.

    AU - Kawaguchi, Yasuo

    AU - Kisvárday, Zoltán

    AU - Kubota, Yoshiyuki

    AU - Lewis, David A.

    AU - Marín, Oscar

    AU - Markram, Henry

    AU - McBain, Chris J.

    AU - Meyer, Hanno S.

    AU - Monyer, Hannah

    AU - Nelson, Sacha B.

    AU - Rockland, Kathleen

    AU - Rossier, Jean

    AU - Rubenstein, John L.R.

    AU - Rudy, Bernardo

    AU - Scanziani, Massimo

    AU - Shepherd, Gordon M.

    AU - Sherwood, Chet C.

    AU - Staiger, Jochen F.

    AU - Tamás, Gábor

    AU - Thomson, Alex

    AU - Weng, Yun

    AU - Yuste, Rafael

    AU - Ascoli, Giorgio A.

    PY - 2013/3/1

    Y1 - 2013/3/1

    N2 - A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus.

    AB - A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus.

    UR - http://www.scopus.com/inward/record.url?scp=84875424532&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84875424532&partnerID=8YFLogxK

    U2 - 10.1038/nrn3444

    DO - 10.1038/nrn3444

    M3 - Article

    VL - 14

    SP - 202

    EP - 216

    JO - Nature Reviews Neuroscience

    JF - Nature Reviews Neuroscience

    SN - 1471-003X

    IS - 3

    ER -