La limite pour la solution des équations de Navier-Stokes quand la viscosité tend vers zéro

Translated title of the contribution: Navier-Stokes equations on an exterior circular domain: Construction of the solution and the zero viscosity limit

Russel Caflisch, Marco Sammartino

Research output: Contribution to journalArticle

Abstract

In this Note, we consider the limit of Navier-Stokes equations on a circular domain. By an explicit construction of the solution, it is proved that, when viscosity goes to zero, solution converges to the Euler solution outside the boundary layer and to the Prandtl solution inside the boundary layer.

Original languageFrench
Pages (from-to)861-866
Number of pages6
JournalComptes Rendus de l'Academie des Sciences - Series I: Mathematics
Volume324
Issue number8
StatePublished - 1997

Fingerprint

Boundary Layer
Viscosity
Navier-Stokes Equations
Zero
Euler
Converge

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

La limite pour la solution des équations de Navier-Stokes quand la viscosité tend vers zéro. / Caflisch, Russel; Sammartino, Marco.

In: Comptes Rendus de l'Academie des Sciences - Series I: Mathematics, Vol. 324, No. 8, 1997, p. 861-866.

Research output: Contribution to journalArticle

@article{4a1b3bea8d39448e9f828ba1ad804699,
title = "La limite pour la solution des {\'e}quations de Navier-Stokes quand la viscosit{\'e} tend vers z{\'e}ro",
abstract = "In this Note, we consider the limit of Navier-Stokes equations on a circular domain. By an explicit construction of the solution, it is proved that, when viscosity goes to zero, solution converges to the Euler solution outside the boundary layer and to the Prandtl solution inside the boundary layer.",
author = "Russel Caflisch and Marco Sammartino",
year = "1997",
language = "French",
volume = "324",
pages = "861--866",
journal = "Comptes Rendus Mathematique",
issn = "1631-073X",
publisher = "Elsevier Masson",
number = "8",

}

TY - JOUR

T1 - La limite pour la solution des équations de Navier-Stokes quand la viscosité tend vers zéro

AU - Caflisch, Russel

AU - Sammartino, Marco

PY - 1997

Y1 - 1997

N2 - In this Note, we consider the limit of Navier-Stokes equations on a circular domain. By an explicit construction of the solution, it is proved that, when viscosity goes to zero, solution converges to the Euler solution outside the boundary layer and to the Prandtl solution inside the boundary layer.

AB - In this Note, we consider the limit of Navier-Stokes equations on a circular domain. By an explicit construction of the solution, it is proved that, when viscosity goes to zero, solution converges to the Euler solution outside the boundary layer and to the Prandtl solution inside the boundary layer.

UR - http://www.scopus.com/inward/record.url?scp=0031116236&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031116236&partnerID=8YFLogxK

M3 - Article

VL - 324

SP - 861

EP - 866

JO - Comptes Rendus Mathematique

JF - Comptes Rendus Mathematique

SN - 1631-073X

IS - 8

ER -